• Title/Summary/Keyword: Cadmium accumulation

Search Result 194, Processing Time 0.021 seconds

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

  • Khatun, Amina;Pal, Sandipan;Mukherjee, Aloke Kumar;Samanta, Palas;Mondal, Subinoy;Kole, Debraj;Chandra, Priyanka;Ghosh, Apurba Ratan
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.21.1-21.7
    • /
    • 2016
  • Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn ($205.0{\pm}65.5mg/kg$)>Cu ($29.9{\pm}10.2mg/kg$)>Pb ($22.7{\pm}10.3mg/kg$)>Cd ($3.7{\pm}2.2mg/kg$). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

The effect of Indole acetic acid on the accumulation of Cd2+ and growth of Cd2+ - treated Commelina communis L. (닭의장풀에 Cd2+ 처리시 Cd2+ 흡수와 생장에 미치는 indole acetic acid의 영향)

  • Lee, Jun Sang
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.513-518
    • /
    • 2004
  • 3-weeks old Commelina was transferred to and grown in Hoagland solution (Control, $100\muM$ $Cd^{2+}$, $100\muM$ $Cd^{2+}$+ $100\muM$ IAA, $100\muM$ $Cd^{2+}$+ $100\muM$ IAA + 2 mM sucrose) for 3 weeks and then the effects of indole acetic acid (IAA) on the accumulation of $Cd^{2+}$ and growth of $Cd^{2+}$-treated Commelina were investigated. In the treatment of $Cd^{2+}$, $Cd^{2+}$ was uptaked to 1.74, and 51.36 ${\mu}g/g$ frwt. at the first week, but for three weeks, 0.51 and 34,53 ${\mu}g/g$ frwt, in leaf and stem respectively. When IAA was treated along with $Cd^{2+}$, $Cd^{2+}$ was uptaked to 0.18 and 8.63 ${\mu}g/g$ fiwt, at the first week, and for the incubation of 3 weeks, 0,51 and 45.0 ${\mu}g/g$ fiwt. in leaf and stem. In case of $Cd^{2+}$+IAA+sucrose, $Cd^{2+}$ was uptaked to 1.45 and 18.33 ${\mu}g/g$ frwt. at the first week, but for 3 weeks, 0,51 and 25.45 ${\mu}g/g$ fiwt. in leaf and stem. Likewise $Cd^{2+}$ uptake, the growth was also affected by $Cd^{2+}$ and IAA. During the incubation of 3 weeks, $Cd^{2+}$ reduced the stem growth about 8% in all weeks, but the treatment of IAA recovered the inhibition of stem growth caused by $Cd^{2+}$ to the degree of the control Therefore, it could be concluded that IAA altered the pattern of $Cd^{2+}$ uptake and the growth which were supposed to change $Cd^{2+}$ toxicity.

Heavy Metal Accumulation in Edible Part of Eleven Crops Cultivated in Metal Contaminated Soils and Their Bio-concentration Factor (중금속 오염 토양에서 재배한 주요 작물별 가식부 중금속 축적 농도 및 생물농축계수)

  • Lim, Ga-Hee;Kim, Kye-Hoon;Seo, Byoung-Hwan;Kim, Kwon-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.260-267
    • /
    • 2015
  • BACKGROUND: The current study was conducted to examine the species specific accumulation of Cd and Pb in 11 crop species (Soybean, Sesame, Corn, Polished rice, Carrot, Potato, Garlic, Spring onion, Chinese leek, Red pepper, Eggplant), through cultivating them under the same condition with metal contaminated soils.METHODS AND RESULTS: Eleven crop species were cultivated in three different soils contaminated with Cd and Pb and harvested. Edible parts of each crop was pretreated and analyzed to determine Cd and Pb concentrations, and subsequently bioconcentration factors (BCFs) were calculated. In general, the crops of which seeds are used as food showed high concentrations of both Cd and Pb. For instance, Cd concentrations in crops cultivated in Soil A was in the order of soybean (0.432 mg kg-1) > sesame (0.385) > polished rice (0.176) > carrot (0.116) > corn (0.060) > red pepper > (0.047) > potato (0.044) > egg plant (0.025) > garlic (0.023) > spring onion (0.016) > Chinese leek (0.011). BCFs showed the same order.CONCLUSION: From this study, it can be conclude that seeds plants should not be cultivated in Cd and Pb contaminated soils to secure food safety from metal contaminated soils.

Primary study on metal amounts in Lophius piscatorius Linnaeus, 1758 obtained from fish markets in Sinop, Turkey

  • Bat, Levent;Yardim, Oztekin;Oztekin, Aysah;Sahin, Fatih;Arici, Elif
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • The levels of five heavy metals (mercury, cadmium, lead, copper and zinc) were analyzed in edible tissues of Lophius piscatorius Linnaeus, 1758 marketed in Sinop coasts of the Black Sea by using inductively coupled plasma mass spectrometry. With the present study, heavy metal values of this fish in the Black Sea were examined for the first time. The mean concentrations in mg kg-1 wet wt. of Hg, Cd, Pb, Cu and Zn were 0.022, 0.009, 0.035, 6.3 and 16 mg kg-1 wet wt., respectively. The results of the present study indicate that the consumption of muscle from anglerfish can be considered safe in terms of permissible legal limits. It is clear that, Zn showed the high accumulation in muscle tissue followed by Cu, while non-essential metals Hg, Cd and Pb showed the low accumulation. This could be explained by the fact that Zn and Cu are essential elements in the bodies of living organisms and has an important role in different physiological processes. In the present study, heavy metal levels in angler fish were low. Likewise, the calculated HI values were lower than one. In conclusion, the results of the present study indicate that the consumption of muscle from anglerfish can be considered safe in terms of permissible legal limits and hazard index values.

Comparison of Heavy Metal(loid)s Contamination of Soil between Conventional and Organic Fruit Farms

  • Lee, Hyun Ho;Kim, Keun Ki;Lee, Yong Bok;Kwak, Youn Sig;Ko, Byong Gu;Lee, Sang Beom;Shim, Chang Ki;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.401-408
    • /
    • 2017
  • Organic amendments such as animal waste compost, lime-bordeaux mixture, and lime sulphur mixture contain heavy metal(loid)s which are toxic to human being, animal, and plant. The objective of this study was to compare heavy metal(loid)s contamination of soil between conventional and organic farm. Soil samples were collected from 10 conventional and 38 organic fruit farms. At each sampling point, top (0~15 cm) and sub soil (15~30 cm) were taken using hand auger. Total concentration for arsenic (As), cadmium (Cd), copper (Cu), nikel (Ni), lead (Pb), and zinc (Zn) in the collected soil were measured. The pollution index (PI) for heavy metal in organic farms indicated it was unpolluted area. However, mean value of PI for organic farms (0.143) was higher than that for conventional farms (0.122). High Geoaccumulation index (Igeo) for Cu, Pb, and Zn implied that grape farms were more polluted than others fruit farms because a lot of lime-bordeaux mixture and lime sulphur were applied in organic grape farms. Especially, top soils showed higher level of contamination than sub soil. Based on the above results, organic amendments might cause accumulation of heavy metals in soil. Therefore, particular attention should be paid for concentration of Cu, Pb, and Zn, when organic amendments are used in the organic fruit farms.

Effects of Lycii Fructus Water Extracts on the Lead-Induced Nephrotoxicity in Rats (구기자(枸杞子) 추출물이 납 투여(投與)에 의한 흰쥐의 신장(腎臟) 손상(損傷)에 미치는 영향(影響))

  • Lee, Ho-Sub;Han, Sung-Hee;Han, Sang-Hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • This study was designed to investigate the effects of Korean Lycii Fructus water extract in Pb-administered rats. The Pb exposed rats were given 100 ppm and 200 ppm in the distilled water. Sixty male Sprague-Dawley rats weighing between 90 and 110g were blocked into 6 groups according to body weight. The control group was fed a normal diet, without lead. The experimental groups, which was fed a normal diet plus 100 ppm and 200 ppm lead, and one group received a normal diet plus Lycii Fructus water extracts. The results: the Food intake, the weight gain, and the kidney weight content in the cadmium added groups were lower than those in the Lycii Fructus water extracts group. The contents of Pb in the kidneys of the rats were determined by using ICP(lnductively Coupled Plasma Spectrophotometer). The accumulation of lead in the kidney was lower in the Lycii Fructus water extracts group. The Plasma levels of renin activity was higher in the lead administration groups, as compared with the Lycii Fructus water extracts. Plasma levels of aldosterone activity was higher in the lead administration group, as compared with Lycii Fructus water extracts. These results suggest that Lycii Fructus water extracts has a lowering effects on the accumulation of pb on kidney and it is believed that the Lycii Fructus water extracts have some protective effects on lead-induced nephrotoxicity in rats, but the mechanism of these effects was obscure.

  • PDF

Recovery of nitrogen by struvite precipitation from swine wastewater for cultivating Chinese cabbage

  • Ryu, Hong-Duck;Lee, Han-Seul;Lee, Sang-Ill
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1253-1264
    • /
    • 2015
  • This study assessed the fertilizing value of struvite deposit recovered from swine wastewater in cultivating Chinese cabbage. Struvite deposit was compared with commercial fertilizers: complex, organic and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test obviously presented that the struvite deposit more facilitated the growth of Chinese cabbage than organic and compost fertilizers even though complex fertilizer was the most effective in growing Chinese cabbage. It was revealed that the growth rate of Chinese cabbage was simultaneously controlled by phosphorus (P) and potassium (K). Also, the nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Specifically, P was the most abundant component in the vegetable tissue of struvite pot. Meanwhile, the utilization of struvite as a fertilizer led to the lower accumulation of chromium ($Cr^{6+}$) than other pots, except for compost fertilizer pots, and no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the Chinese cabbage. The experimental results proved that the optimum struvite dosage for the cultivation of Chinese cabbage was 2.0 g struvite/kg soil. On the basis of these findings, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for Chinese cabbage cultivation.

Struvite recovery from swine wastewater and its assessment as a fertilizer

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • This study evaluated the fertilizing value of struvite deposit recovered from swine wastewater in cultivating lettuce. Struvite deposit was compared to complex fertilizer, organic fertilizer and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test showed that the struvite deposit better enhanced lettuce growth in comparison to commercial fertilizers. It was revealed that the growth rate of lettuce was simultaneously controlled by phosphorus (P) and magnesium (Mg). Moreover, nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Meanwhile, struvite application led to the lower accumulation of mercury (Hg), lead (Pb), chromium ($Cr^{6+}$) and nickel (Ni). In addition, no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the lettuce tissue was observed in struvite application pots. The experimental results proved that the optimum struvite dosage for lettuce cultivation was 0.5 g struvite/kg soil. The column experiments clearly showed that ammonia nitrogen was more slowly released from struvite deposit than from complex fertilizer. Consequently, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for lettuce cultivation.

Effect of Cadmium on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings

  • Cho, Un-Haing;Kim, In-Taek
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.115-121
    • /
    • 2003
  • Leaves of two-week old seedlings of tomato (Lycopersicon esculentum) were treated with various concentrations (0∼100 M) of $CdCl_2$ for up to 9 days and subsequent growth of seedlings, symptoms of oxidative stress and isozyme activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) were investigated. Compared with the non-treated control, Cd exposure decreased biomass but increased Cd accumulation, hydrogen peroxide production and lipid peroxidation as malondialdehyde (MDA) formation in leaves and roots. Further studies on the developmental changes of isozyme activities showed that Fe-SOD, Cu/Zn-SOD and one of three APX isozymes decreased and CAT and one of four POX isozymes increased in leaves, whereas Fe-SOD, one of three POX isozymes and two of four APX isozymes decreased and CAT increased in roots, showing different expression of isozymes in leaves and roots with Cd exposure level and time. Based on our results, we suggest that the reduction of seedling growth by Cd exposure is the oxidative stress resulting from the over production of $H_2O_2$ and the insufficient activities of antioxidant enzymes particularly involved in the scavenging of $H_2O_2$. Further, the decreased activities of SOD and APX isozymes of chloroplast origin, the increased activities of CAT and POX and high $H_2O_2$ contents with Cd exposure might indicate that Cd-induced oxidative stress starts outside chloroplast.