• Title/Summary/Keyword: CadB

Search Result 343, Processing Time 0.027 seconds

Ship Outfitting Design Data Exchange between CAD Systems Using Different Primitive Set (서로 다른 프리미티브 집합을 사용하는 CAD 시스템 사이에 선박 의장 설계 데이터의 교환)

  • Lee, Seunghoon;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.234-242
    • /
    • 2013
  • Different CAD systems are used in ship outfitting design on different usage and purpose. Therefore, data exchanges between CAD systems are required from different formats. For data exchange, boundary representation standard formats such as IGES and ISO 10303 (STEP) are widely used. However, they present only B-rep representation. Because of different CAD systems have their own geometry format, data exchanges with design intend are difficult. Especially, Tribon and PDMS use primitives for express their geometry in ship outfitting design. However, Tribon primitives are represented their parameter by values that are non-parametric. Therefore, data size of catalogue library is bigger than different CAD system using parametric primitive representation. And that system has difficulty on data reprocessing. To solve that problem, we discuss about shape DB which contains design parameters of primitive for exchange Tribon primitives. And geometry data exchange between Tribon and Shape Database that defines based on PDMS scheme are specified using primitive mapping that can represent design intend.

Color stability of fully- and pre-crystalized chair-side CAD-CAM lithium disilicate restorations after required and additional sintering processes

  • Jurado, Carlos Alberto;El-Gendy, Tamer;Hyer, Jared;Tsujimoto, Akimasa
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • PURPOSE. The aim of this study was to investigate shade changes in fully- and pre-crystalized CAD-CAM lithium disilicate crowns after the required and additional firing processes. MATERIALS AND METHODS. One hundred and five crowns of shade A1 with high translucency were milled out of CAD-CAM lithium disilicate blocks and categorized as follows (n = 15): (1) restorations fabricated from Straumann n!ce with no additional sintering process; (2) restorations fabricated from Straumann n!ce with one additional sintering process; (3) restorations fabricated from Straumann n!ce with two additional sintering processes; (4) restorations fabricated from Amber Mill with one sintering process; (5) restorations fabricated from Amber Mill with two sintering processes; (6) restorations fabricated from IPS e.max CAD with one sintering process; (7) restorations fabricated from IPS e.max CAD with two sintering processes. All restorations were evaluated with a color imaging spectrophotometer. RESULTS. All restorations presented some color alteration from the original shade both after a single and after two firing processes. CONCLUSION. The required and additional sintering processes for restorations fabricated with chairside CAD-CAM lithium disilicate blocks cause an alteration of the original shade selected. Shade A1 high translucency restorations tend to change to a more yellowish B1 shade after a sintering process.

A multi-user selective undo/redo approach for collaborative CAD systems

  • Cheng, Yuan;He, Fazhi;Xu, Bin;Han, Soonhung;Cai, Xiantao;Chen, Yilin
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • The engineering design process is a creative process, and the designers must repeatedly apply Undo/Redo operations to modify CAD models to explore new solutions. Undo/Redo has become one of most important functions in interactive graphics and CAD systems. Undo/Redo in a collaborative CAD system is also very helpful for collaborative awareness among a group of cooperative designers to eliminate misunderstanding and to recover from design error. However, Undo/Redo in a collaborative CAD system is much more complicated. This is because a single erroneous operation is propagated to other remote sites, and operations are interleaved at different sites. This paper presents a multi-user selective Undo/Redo approach in full distributed collaborative CAD systems. We use site ID and State Vectors to locate the Undo/Redo target at each site. By analyzing the composition of the complex CAD model, a tree-like structure called Feature Combination Hierarchy is presented to describe the decomposition of a CAD model. Based on this structure, the dependency relationship among features is clarified. B-Rep re-evaluation is simplified with the assistance of the Feature Combination Hierarchy. It can be proven that the proposed Undo/Redo approach satisfies the intention preservation and consistency maintenance correctness criteria for collaborative systems.

An Unigraphics-Based CAD System for Injection Mold Design (Unigraphics 기반 사출금형설계전용 CAD 시스템의 개발)

  • Lee, S.H.;Lee, K.S.;Kim, K.B.;Kim, C.J.;Jang, J.W.;Kim, S.C.;Kim, S.Y.;Huh, Y.M.;Yang, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.257-262
    • /
    • 2001
  • This paper describes a specialized CAD system for injection mold design, which has been developed using the application procedure interfaces of Unigraphics. The system consists of modeling modules that are mutually independent and can be accessed without any predefined sequence. In addition, the design process modeling capability proposed in this paper facilitate mold redesign process caused by modification of part shape.

  • PDF

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Cho, H.Y.;Nam, G.J.;Oh, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.730-733
    • /
    • 2001
  • A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

  • PDF

Development of Rapid Tooling Processes Based on Three-Dimensional CAD/CAM (3차원 CAD/CAM 기반 초단납기 금형제작기술 개발)

  • Ahn, J. H.;Park, K.;Kim, C. K.;Park, B. C.;Choi, S. R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • The present work concerns rapid tooling technology based on three-dimensional CAD/CAM. Two types of tooling processes have been introduced : the quick delivery molding(QDM) process and the rapid tooling(RT) process using a rapid prototyping system. Both processes are based on three-dimensional CAD/CAM technology and realize a paperless manufacturing system with a high efficiency. The proposed approach has been applied to the product development for various electrical parts, and the final delivery has been reduced as compared with the traditional approach.

  • PDF

Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization (보간 길이 최적화에 의한 5축밀링 가공속도 향상)

  • So, B.S.;Jung, Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

Optimization of Bobbin winding type Deflection Yoke Wire Distribution By Using Evolution Startegy (Evolution Startegy를 이용한 Bobbin형 편향코일의 권선분포 최적화)

  • Joe, M.C.;Kang, B.H.;Koh, C.S.;Joo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.130-132
    • /
    • 1994
  • Recently, a Deflection Yoke(DY) is designed in the bobbin-seperator-coil-winding type for high-definite CRT and high-efficient DY of wide vision TV or High Definite TV. This paper presents an optimization or bobbin-seperator-coil-winding type yoke's coil distribution for minimizing gap between desired and practical deflections of electron beams using by Evolution Strategy.

  • PDF

Development of Smart CAD/CAM System for Machining Center Based on B-Rep Solid Modeling Techniques (I) (A Study on the B-Rep Solid Modeler using Half Edge Data Structure) (B-Rep 솔리드모델을 이용한 머시닝 센터용 CAC/CAM 시스템 개발(1): 반모서리 자료구조의 B-Rep 솔리드모델러에 관한 연구)

  • 양희구;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.689-694
    • /
    • 1994
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interference check between solids, the structural design of machine tools and robots and so on.

  • PDF

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.