• Title/Summary/Keyword: Caching strategies

Search Result 24, Processing Time 0.019 seconds

Caching and Concurrency Control in a Mobile Client/Sever Computing Environment (이동 클라이언트/서버 컴퓨팅환경에서의 캐싱 및 동시성 제어)

  • Lee, Sang-Geun;Hwang, Jong-Seon;Lee, Won-Gyu;Yu, Heon-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.974-987
    • /
    • 1999
  • 이동 컴퓨팅 환경에서 자주 접근하는 데이터에 대한 캐싱은 무선 채널의 좁은 대역폭에서 경쟁을 줄일 수 있는 유용한 기술이다. 그러나, 트랜잭션 캐시 일관성을 지원하는 전통적인 클라이언트/서버 전략은 클라이언트와 서버간에 많은 양의 통신을 필요로 하기 때문에 이동 클라이언트/서버 컴퓨팅 환경에서는 적절하지 않다. 본 논문에서는 브로드캐스트-기반 캐시 무효화 정책을 사용하면서 트랜잭션 캐시 일관성을 지원하는 OCC-UTS (Optimistic Concurrency Control with Update TimeStamp) 프로토콜을 제안한다. 접근한 데이터에 대한 일관성 검사 및 완료 프로토콜은 캐시 무효화 과정의 내부 과정으로 완전 분산 형태로 효율적으로 구현되며, 일관성 체크의 대부분이 이동 클라이언트에서 수행된다. 또한, 분석 모델에 기반한 성능 비교를 통해, 본 논문에서 제안하는 OCC-UTS 프로토콜이 다른 경쟁 프로토콜보다 높은 트랜잭션 처리율을 얻으며, 데이터 항목을 자주 접근하면 할수록 지역 캐시를 사용하는 OCC-UTS 프로토콜이 더 효율적임을 보인다. 이동 클라이언트의 접속 단절에 대해서는 무효화 브로드캐스트 윈도우를 크게 하여 접속 단절에 적절히 대처할 수 있다.Abstract In a mobile computing environment, caching of frequently accessed data has been shown to be a useful technique for reducing contention on the narrow bandwidth of the wireless channels. However, the traditional client/server strategies for supporting transactional cache consistency that require extensive communications between a client and a server are not appropriate in a mobile client/server computing environment. In this paper, we propose a new protocol, called OCC-UTS (Optimisitic Concurrency Control with Update TimeStamp), to support transactional cache consistency in a mobile client/server computing environment by utilizing the broadcast-based solutions for the problem of invalidating caches. The consistency check on accessed data and the commitment protocol are implemented in a truly distributed fashion as an integral part of cache invalidation process, with most burden of consistency check being downloaded to mobile clients. Also, our experiments based on an analytical model substantiate the basic idea and study the performance characteristics. Experimental results show that OCC-UTS protocol without local cache outperforms other competitor protocol, and the more frequent a mobile client accesses data items the more efficient OCC-UTS protocol with local cache is. With respect to disconnection, the tolerance to disconnection is improved if the invalidation broadcast window size is extended.

Analysis of Commercial Continuous Media Server Workloads on Internet (인터넷 환경에서의 상용 연속미디어 서버의 부하 분석)

  • Kim, Ki-Wan;Lee, Seung-Won;Park, Seong-Ho;Chung, Ki-Dong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.87-94
    • /
    • 2003
  • A study on the characteristics of server workloads based on user access pattern offers insights for the strategies on continuous media caching and network workloads distribution. This paper analyses characteristics of continuous media filet in each fervor and user access requests to each of them, using log data of three commercial sites, which are providing continuous media files in the form of real time streaming on the Internet. These servers have more continuous files than ones in the previously reported studies and are processing very large number of user access requests. We analyse the characteristics of continuous media files in each server by the size of files. playback time and encoding bandwidth. We also analyse the characteristics of user access requests by the distribution of user requests to continuous media files, user access time, access rate based on the popularity of the files and the number if access requests to serial continuous media files.

Cache Replacement Strategies considering Location and Region Properties of Data in Mobile Database Systems (이동 데이타베이스 시스템에서 데이타의 위치와 영역 특성을 고려한 캐쉬 교체 기법)

  • Kim, Ho-Sook;Yong, Hwan-Seung
    • Journal of KIISE:Databases
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2000
  • The mobile computing service market is increasing rapidly due to the development of low-cost wireless network technology and the high-performance mobile computing devices. In recent years, several methods have been proposed to effectively deal with restrictions of the mobile computing environment such as limited bandwidth, frequent disconnection and short-lived batteries. Amongst those methods, much study is being done on the caching method - among the data transmitted from a mobile support station, it selects those that are likely to be accessed in the near future and stores them in the local cache of a mobile host. Existing cache replacement methods have some limitations in efficiency because they do not take into consideration the characteristics of user mobility and spatial attributes of geographical data. In this paper, we show that the value and the semantic of the data, which are stored in the cache of a mobile host, changes according to the movement of the mobile host. We argue it is because data that are geographically near are better suited to provide an answer to a users query in the mobile environment. Also, we define spatial location of geographical data has effect on, using the spatial attributes of data. Finally, we propose two new cache replacement methods that efficiently support user mobility and spatial attributes of data. One is based on the location of data and the other on the meaningful region of data. From the comparative analysis of the previous methods and that they improve the cache hit ratio. Also we show that performance varies according to data density using this, we argue different cache replacement methods are required for regions with varying density of data.

  • PDF

Dynamic Query Processing Using Description-Based Semantic Prefetching Scheme in Location-Based Services (위치 기반 서비스에서 서술 기반의 시멘틱 프리페칭 기법을 이용한 동적 질의 처리)

  • Kang, Sang-Won;Song, Ui-Sung
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.448-464
    • /
    • 2007
  • Location-Based Services (LBSs) provide results to queries according to the location of the client issuing the query. In LBS, techniques such as caching and prefetching are effective approaches to reducing the data transmission from a server and query response time. However, they can lead to cache inefficiency and network overload due to the client's mobility and query pattern. To solve these drawbacks, we propose a semantic prefetching (SP) scheme using prefetching segment concept and improved cache replacement policies. When a mobile client enters a new service area, called semantic prefetching area, proposed scheme fetches the necessary semantic information from the server in advance. The mobile client maintains the information in its own cache for query processing of location-dependent data (LDD) in mobile computing environment. The performance of the proposed scheme is investigated in relation to various environmental variables, such as the mobility and query pattern of user, the distributions of LDDs and applied cache replacement strategies. Simulation results show that the proposed scheme is more efficient than the well-known existing scheme for range query and nearest neighbor query. In addition, applying the two queries dynamically to query processing improves the performance of the proposed scheme.