• Title/Summary/Keyword: Cable-stayed bridge

Search Result 544, Processing Time 0.022 seconds

A Study on Optimal Cable Prestressing and Fabrication Camber of Wando Bridge (완도대교의 최적 케이블장력 및 제작 Camber 산정에 관한 연구)

  • Lee Tae-Yeol;Kim Young-Hoon;Kim Jae-Kwon;Kang Sung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.283-290
    • /
    • 2006
  • Cable-stayed bridge is a bridge that consists of one or more pylons, with cables supporting the deck. Cable-stayed bridges have come into wide use recently because of their economy, stability, and excellent appearance. It is possible to achieve a uniform moment distribution in the stiffening girders mainly by prestressing the cables, which leads to a more economical design in material and weight than other types of bridges. However, to achieve a more uniform moment distribution is vague objective, so it cannot be easily defined as the optimization problem. In other words, the minimization of cost or weight as the objective is not directly related to the optimization of cable prestressing. Therefore, it has been considered as one of the most important, difficult and also interesting topics among many researchers and bridge engineers to determine the optimal tensioning strategy how to apply prestressing forces of the cables of cable-stayed bridge. A number of approaches (Wang et al. 1993, $Negr\~{a}o\;and\;Sim\~{o}es$ 1997, Agrawal 1997, Janjic et al. 2003) to determine the optimal cable tensions have been proposed in the literature. Among these approaches the unit load method (Janjic et al. 2003) is considered in this paper because it can take into account the actual construction process while other approaches are based on the configuration of the final structure only. In this paper, '2-step approach' based on the unit load method is proposed to find the optimal tensioning strategy especially for the atypical asymmetric bridge under construction, which has continuous deck supported by one pylon and stay cables. Some numerical results will be given to show the validity of the new approach suggested in this paper.

  • PDF

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Hybrid Deck System for Partially Earth Anchored Cable Stayed Bridges (부분 인장형 사장교 주형의 복합 구조)

  • Cho, Jae-Young;Noh, Junghwi;Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.30-36
    • /
    • 2013
  • Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.

CFD practical application in conceptual design of a 425 m cable-stayed bridge

  • Nieto, F.;Hernandez, S.;Jurado, J.A.;Baldomir, A.
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.309-326
    • /
    • 2010
  • CFD techniques try to find their way in the bridge engineering realm nowadays. However, there are certain fields where they offer superior performance such as conceptual bridge design and bidding design. The CFD studies carried out for the conceptual design of a 425 m length cable-stayed bridge are presented. A CFD commercial package has been employed to obtain for a set of cross-sections the aerodynamic coefficients considering 2D steady state. Additionally, for those cross-sections which showed adequate force coefficients, unsteady 2D simulations were carried out to detect the risk of vortex shedding. Based upon these computations the effect on the aerodynamic behavior of the deck cross-section caused by a number of modifications has been evaluated. As a consequence, a new more feasible cross-section design has been proposed. Nevertheless, if the design process proceeds to a more detailed step a comprehensive set of studies, comprising extensive wind tunnel tests, are required to better find out the aerodynamic bridge behavior.

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

Stationary and non-stationary buffeting analyses of a long-span bridge under typhoon winds

  • Tao, Tianyou;Wang, Hao;Shi, Peng;Li, Hang
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.445-457
    • /
    • 2020
  • The buffeting response is a vital consideration for long-span bridges in typhoon-prone areas. In the conventional analysis, the turbulence and structural vibrations are assumed as stationary processes, which are, however, inconsistent with the non-stationary features observed in typhoon winds. This poses a question on how the stationary assumption would affect the evaluation of buffeting responses under non-stationary wind actions in nature. To figure out this problem, this paper presents a comparative study on buffeting responses of a long-span cable-stayed bridge based on stationary and non-stationary perspectives. The stationary and non-stationary buffeting analysis frameworks are firstly reviewed. Then, a modal analysis of the example bridge, Sutong Cable-stayed Bridge (SCB), is conducted, and stationary and non-stationary spectral models are derived based on measured typhoon winds. On this condition, the buffeting responses of SCB are finally analyzed by following stationary and non-stationary approaches. Although the stationary results are almost identical with the non-stationary results in the mean sense, the root-mean-square value of buffeting responses are underestimated by the stationary assumption as the time-varying features existing in the spectra of turbulence are neglected. The analytical results highlights a transition from stationarity to non-stationarity in the buffeting analysis of long-span bridges.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Movable Anchorage System for Mitigation of Cable Vibration in Cable-Stayed Bridges with Sag (Sag가 고려된 사장교 케이블의 진동저감을 위한 Movable Anchorage 시스템)

  • Hwang, Inho;Park, Jun Hyung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.657-664
    • /
    • 2008
  • Rain-wind induced cable vibration can cause the damages in the cable-stayed bridge due to very little inherent damping characteristics and low fundamental frequency. External Dampers attached to stay cables near anchorages have been shown to be effective means at short stay-cables. However, installation locations of external dampers are limited to a particular range due to aesthetic and practical reasons for very long stay-cables. A recent study by the authors showed that the stay-cable vibration system can perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges. This paper extends the previous study on the taut string representation of the cable by adding cable sag and inclination. The response of the proposed system compared to those of the cable with and without an external damper, and the movable anchorage system provides very effective mitigation of cable vibration. Cable damping ratio is seen to be remarkably reduced by movable anchorage system for a wide range of cable sag. This result shows that the sag effects of the proposed system should be considered.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable (확률변수의 상관성을 고려한 사장교의 확률유한요소해석 및 신뢰성해석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.21-33
    • /
    • 2006
  • The reliability analysis can be conducted more effectively by formulating the stochastic finite element method suitable for the reliability theory about the cable stayed bridge. After conducting the initial equilibrium analysis of the cable stayed bridge, the program which can conduct the linear and nonlinear stochastic finite element analysis using the perturbation method and the reliability analysis considered to the correlation of the random variable is developed. Using the results of this program about the cable stayed bridge, the characteristic of the node displacement, element force and cable tension according to the correlation of the random variable is investigated quantitatively. Also the reliability index and the failure probability are examined by the compounding the correlation of the random variable.