• Title/Summary/Keyword: Cable member

Search Result 84, Processing Time 0.024 seconds

The Type and Development for Structure System with Non-rigid Member (대공간 연성 구조시스템의 종류와 발달과정)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.148-157
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification. In each the structure systems with non-rigid member, the examples were also investigated considering their historical developments. It present that the light weight structure system and the openness of space have pursued with the developments. So largely, cable net structure with membrane, membrane structure and hybrid structure have used in these days.

  • PDF

The Term and Classification of Structure System with Non-rigid Member (연성구조시스템의 분류체계와 용어)

  • Lee, Ju-Na;Park, Sun-Woo;Kim, Seung-Deog;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.99-105
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification.

  • PDF

Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member

  • Yu, Chih-Peng;Cheng, Chia-Chi
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.271-295
    • /
    • 2012
  • This paper presents the solution scheme of using the continuous formulation of 1-D linear member for the dynamic analysis of structures consisting of axially loaded members. The context describes specific applications of such scheme to the verification of experimental data obtained from field test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an axially loaded flexural member. The applications of the formulation and the proposed formula are illustrated with a series of realistic examples.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.

The Development and Historical Character for Structure System with Non-rigid Member (연성구조시스템의 발달과정과 역사적 특성)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.93-101
    • /
    • 2004
  • Structural systems have a lot of architectural meaning concerning historical context of structural technology. Therefore, surveying constructed examples and their constructed year, the character and development of various formations of structure systems with non-rigid member were investigated. At the result, the early modem structure systems with non-rigid member were made up from the cable structures, then membrane structures have mainly used after 1970's. The early structural systems had intended to make the large scale space, after 1970's, they have been adopted into the smaller scale space structure, and cable net structure, pneumatic structure and dome typed hybrid membrane system tend to compose the larger scale spare structure.

  • PDF

Dynamic Characteristics of Cable-Stayed Anchorage considering Cracks at Bolt and Welding Connection (용접 및 볼트 연결부 균열을 고려한 사장교 케이블 정착부의 동특성 해석)

  • Kim, Chul Young;Kim, Sung Bo;Jung, Woo Tai
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.351-362
    • /
    • 1999
  • Damage detection methods which utilize the change in dynamic characteristics are very hard to apply to large civil structures since local damage hardly affects global dynamic characteristics. But, if there is a very important and critical member and we focus only on the local behavior of it, it would be possible to detect damage from the change in local dynamic characteristics, such as natural frequencies and mode shapes .In this study, the cable anchorage part of a cable-stayed bridge under construction is modeled and analyzed by commercial finite element program, ABAQUS. It has both welding and bolting connections with a cable and a stiffening plate, and has a possible high stress concentration portions in it. Several damage scenarios such as crack through the welding or crack through the bolting connection are examined. The result shows that the local natural frequencies of the damaged member decrease up to 16% compared with that of the undamaged member. It is concluded that there is quite a high feasibility that the damage of the cable anchorage can be detected by measuring local dynamic characteristics.

  • PDF

Displacement Control Technique of Pre-stressable Cable Structures by Force Method (하중법을 이용한 케이블 구조물의 변위제어기법에 관한 연구)

  • Shon, Su-Deok;Kwan, Alan S.K.;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 2011
  • A cable structures have the advantage that cover a large space without column but it is very sensitive to deal with shape control because of its flexibility. Especially, location of control member and needed elongation of member are important things. Therefore, the purpose of this paper is studied on displacement control technique for pre-stressed cable structures by force method considering order of control. The layout of this paper is as follows. Firstly, in section 2, the control technique by force method for cable structures is given. Secondly, section 3 briefly introduces simple cable net in order to apply control technique considering ordering of actuator. Finally, more complex example for effective member and the conclusion are in section 4 and 5, respectively.