• Title/Summary/Keyword: Cable fault

Search Result 273, Processing Time 0.025 seconds

Increased impedance by quench at a shield layer of HTS power cable for fault current limiting function

  • Choi, Youngjun;Kim, Dongmin;Cho, Jeonwook;Sim, Kideok;Kim, Sungkyu;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.59-63
    • /
    • 2019
  • To reduce the fault current below the current capacity of a circuit breaker, researches on HTS (High Temperature Superconductor) power cables with fault current limiting (FCL) function are increasing. An FCL HTS power cable transports current with low a impedance during normal operation. Yet, it limits the fault current by an increased inductive or resistive impedance of conducting layer when quench occurs at the FCL HTS power cable by the large fault current. An inductive type FCL HTS power cable uses increased inductive impendence caused by leakage magnetic flux outside the cable core when the quench occurs at a shield layer losing the magnetic shielding effect. Therefore, it has an advantage of less resistive heating than resistive type FCL HTS power cable and temperature increase is suppressed. This paper describes an ideal circuit model for the FCL HTS power cable to investigate the effectiveness of increased inductive impedance when quench occurs at the shield layer. Then, FEM analysis is presented with a simplified model cable composed of various iron yokes to investigate the effect of the shape of yoke on the generation of the inductive impedance.

A Study on Energy Characteristics in Transient States of OF Cable Systems (OF 케이블 계통에서 과도상태시 에너지 특성 검토)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Lee, Dong-Il;Seo, Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.468-475
    • /
    • 2006
  • This paper reviews the energy characteristics of oil filled cables in transient state such as grounding fault and lightning surge. Artificial grounding fault test was firstly performed in 2003 for the analysis of arc voltage and breakdown energy according to the fault current. In this paper, energy of OF cable is variously analysed at joint box based on the actual test. Then more various conditions such as installation types, section lengths and CCPU(Cable Covering Protection Unit) connection types are applied for the simulation using EMTP when the single line to ground fault and direct lightning stroke are occurred on actual underground power cable systems and combined power cable systems, respectively. Finally, the energy by the length of crossbonded lead and grounding lead as well as fault lasting time is also calculated using EMTP simulation.

Diagnosis of Poor Contact Fault in the Power Cable Using SSTDR (SSTDR을 이용한 케이블의 접촉 불량 고장 진단)

  • Kim, Taek-Hee;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1442-1449
    • /
    • 2016
  • This paper proposes a diagnosis to detecting poor contact fault and fault location. Electrical fire by poor contact fault of power cable occupied a large proportion in the total electrical installations. The proposed method has an object to prevent electrical fault in advance. But detecting poor contact fault is difficult to detect fault type and fault location by using conventional reflectometry due to faults generated intermittently and repeatedly on the time change. Therefore, in this paper poor contact fault and fault conditions were defined. System generating poor contact fault produced for the experimental setup. SSTDR and algorithm of reference signal elimination heighten performance detecting poor contact fault on live power cable. The diagnosis methods of signal process and analysis of reflected signal was proposed for detecting poor contact fault and fault location. The poor contact fault and location had been detected through proposed diagnosis methods. The fault location and error rate of detection were verified detecting accuracy by experiment results.

Study on Selection of HTS Wire for Fabrication of Fault Current-limiting Type HTS Cables (사고전류 제한형 초전도케이블 제작을 위한 초전도 선재 선정에 관한 연구)

  • Heo, Soung-Ouk;Kim, Tae-Min;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.904-908
    • /
    • 2013
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through a high-capacity and high-$T_c$ superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate measure to protect it. Therefore, appropriate measures are needed to protect HTS cables. The fault-current-limiting HTS cable that was suggested in this study performs an ideal transport current function in normal operations and plays a role in limiting a fault current in abnormal operation (i.e., when a fault current is applied). It has a structure that facilitated its self-current-limiting ability through device change and reconfiguration in the existing HTS cable without extra switching equipment. To complete this structure, it is essential to investigate about the selection of the superconducting wire. Therefore, in this paper, HTS wire using two types of different stabilization layer is compared and examined the stability and current limiting properties under the existence of a fault current.

Transient Phenomena Analysis and Estimation According to Unbalance Factors on Underground Power Cable Systems (지중송전계통에서 불평형 구성요소에 따른 과도현상 해석 및 평가)

  • Jung Chae-Kyun;Lee Jong-Beom;Kang Ji-Won;Lee Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.410-417
    • /
    • 2005
  • This paper analyses the transient phenomena against single line to ground fault and lightning surge on underground power cable systems. For analysis in various fault conditions, several actual underground power cable systems are modeled using ATP In ground fault, the transient characteristic of the conductor and the sheath according to the fault current and the installation types of CCPU are analysed. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

Ground Fault Current Variation of 22.9kV Multi Neutral Grounded Distribution System with CD Type Superconducting Cable (22.9kV 중성점 다중접지계통에 CD형 초전도케이블을 적용한 경우의 지락전류변화)

  • Lee, Jong-Bae;Hwang, Si-Dole;Sohn, Song-Ho;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.993-999
    • /
    • 2007
  • This paper discusses the effects of CD type superconducting cable operation in 22.9kV multi neutral grounded distribution system during L-G fault and counterplans to power system protection. In case of using the 3-phase CD-type superconducting cable, the inductance of superconducting cable system would be decreased due to the current of shield part of superconducting cable, which is opposite direction and nearly equal value with respect to main superconductor. However, when the shield circuit system is operated in shorted state, shield current decreases faulted ground current and give effects to power system protection scheme. This study examines the phenomena of single line to ground fault case in above mentioned system using the EMTDC program and discusses the right operation method of superconducting shield.

Behavior of cable-stayed bridges built over faults

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.187-210
    • /
    • 2012
  • Cable-stayed bridges are commonly used in modern bridge engineering for covering long spans. In some special cases, the designer is obliged to build such a bridge over an existing fault. Activation of this fault is possible to bring about a relative displacement or separation movement between two neighboring pylons of the bridge built on opposite sides of the fault. In this work, the effect of such a fault-induced pylon displacement on bridge's deformations and on cables' strength is thoroughly studied for several types of cable-stayed bridges and useful conclusions are drawn aiming the design. The influence of a possible earthquake and traffic loads crossing the bridge when the pylons are moving away from each other is not examined.

Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR (SSTDR에서 시간-주파수 상관을 활용한 저압 케이블의 고장 검출)

  • Jeon, Jeong-Chay;Kim, Taek-Hee;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.498-504
    • /
    • 2015
  • This paper proposed an Spread Spectrum Time Domain Reflectometry (SSTDR) using time-frequency correlation analysis in order to have more accurate fault determination and location detection than classical SSTDR despite increased signal attenuation due to the long distance to cable fault location. The proposed method was validated through comparison with classical SSTDR methods in open- and short-circuit fault detection experiments of low-voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.

A Study on the Analysis of Induced Voltage of Sheath on 154kV Transmission Power Cable in Multi Fault Cases (다양한 고장조건에서 154kV 지중송전케이블 시스유기전압해석에 관한 연구)

  • Lee, Jun-Sung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1179-1181
    • /
    • 1998
  • This paper describes the induced voltage of sheath on 154kV transmission power cable in multi fault states. Simulation was carried out to obtain the induced voltage of sheath according to change of, fault angle and grounding resistance using EMTP. Modeling of cable system is also established in EMTP to analyze. The simulation results can be useful reference to design cable system in power system.

  • PDF

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.