• Title/Summary/Keyword: Cabin air

Search Result 188, Processing Time 0.029 seconds

Literature Review on Cosmic Radiation Exposure to Air Craft Cabin Crew (항공기 객실승무원의 우주방사선 노출에 관한 고찰)

  • Jang, Ryeo-Jin
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.643-649
    • /
    • 2018
  • Recently, together with advancement of domestic aviation industry, overseas tourists using planes have been soared. This study aimed to investigate the risk of diseases for the passengers and flight attendants from the exposed cosmic radiation during the flight by domestic and international literature reviews, as follows. Airliners should develop the program to measure the actual radiation dose and prepare the portable devices for radiation measurement in flight to lower the accumulated dose of cosmic radiation by the attendants. Regulation should be prepared to check the exposed dose during the flight for the passengers by announcement of individual exposed radiation dose which has been provided only to the flight attendants. Passengers and flight attendants should recognize they are exposed to excessive cosmic radiation during the flight and civilians should be protected by the cosmic radiation when they use the flights, which should be prepared by the regulations.

Evaluation of volatile organic compounds emitted from door-trim armrest using micro chamber and 20 L static chamber (마이크로 챔버와 20 L static chamber를 이용한 도어트림 암레스트로부터 방출되는 휘발성 유기화합물 평가)

  • Lee, Ik-Hee;Yoo, Ji-Ho;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.290-297
    • /
    • 2011
  • In present, evaluation method for car cabin air quality has been developed in ISO, China, Japan. Also The management standard for new produced car has been applied since 1, July, 2010. To manage car cabin air quality, It is important to evaluate VOC emitted from interior material. In this study, complete component of door trim armrest was evaluated in accordance with ISO 12219-5, cut component was evaluated in accordance with ISO 12219-3. The vapour gas was collected with stainless tube packed with Tenax TA and analyzed with TD-GC/MS. It was confirmed that emission rate of each compounds was difficult in each evaluation method. As a result, to evaluating each components composing door trim armrest, main sources of emitting VOCs in door trim armrest were PP substrate and adhesive.

Cabin Air Filter Media Produced by Needle Punching Process (니들펀치 공정에 의한 캐빈에어필터 여재의 제조)

  • Park, Seungkyu;Kim, Heonchang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.561-564
    • /
    • 2009
  • Filter media finely interspersed with activated carbons were prepared by a needle punching process without using chemical binders. Their characteristics were investigated efficiently to abate environmentally harmful gas such as acetaldehyde, and were compared with those of cabin air filter coated with activated carbons by using chemical binders. These combination filters were installed on a vehicle fan placed in a test chamber of capacity similar to the interior volume of a commercially available passenger car, and the efficiency of acetaldehyde abatement was measured as a function of time. The filter utilizing chemical binders showed somewhat better performance for the elimination of acetaldehyde despite the adverse effect of the chemical binder that would clog the micropores of the activated carbons. It turned out that the needle punching process had the activated carbons agglomerated due to hydrophobic interactions, resulting in a relatively larger void area than that of the filter utilizing chemical binders.

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Reduction of Particulate Matters Levels in Railway Cabins in Korea

  • Park, Duck-Shin;Kwon, Soon-Bark;Cho, Young-Min;Park, Eun-Young;Jeong, Woo-Tae;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Objectives: High concentrations of airborne particulate matters (PM) can affect the health of passengers using public transportation. The objectives of this research were to develop a PM control system for a railway cabin and to evaluate the performance of the device under conditions of an actual journey. Methods: This study measured the concentrations of $PM_{10}$ and $PM_{2.5}$ simultaneously in a reference cabin and a cabin with the PM control device. Results: The average $PM_{10}$ concentration in the reference cabin was 100 ${\mu}g/m^3$, and the $PM_{10}$ concentration in the cabin with the control device was 79 ${\mu}g/m^3$. While the overall control efficiency of the control device was 15.4%, reduction was more effective for peak $PM_{10}$ concentration. However, $PM_{2.5}$ levels did not differ greatly between the reference cabin and the cabin with the control device. The ratio of $PM_{2.5}$ to $PM_{10}$ was 0.37. $PM_{10}$ concentrations in cabins were not associated with ambient concentrations, indicating that the main sources of $PM_{10}$ were present in cabins. Additionally, average $CO_2$ concentration in the cabins was 1,359 ppm, less than the maximum of 2,000 ppm set out by the Korean Ministry of Environment's guideline. The $CO_2$ concentration in cabins was significantly associated with the number of passengers: the in-cabin concentration = $23.4{\times}N+460.2$, where N is the number of passengers. Conclusions: Application of the PM control device can improve $PM_{10}$ concentration, especially at peak levels but not $PM_{2.5}$ concentration.

Study on Adsorption of Carbon Dioxide in Cabin Using Chamber (챔버를 이용한 객실 이산화탄소 흡착 연구)

  • Cho, Young-Min;Lee, Ji-Yun;Choi, Jin-Shik;Kwon, Soon-Bark;Park, Duck-Shin;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1309-1314
    • /
    • 2011
  • People spend approximately 80 ~ 90 % of their time in various kinds of indoor spaces. And, in metropolitan area, most people spend more than 1 hour in public transportation everyday. For this reason, people's interest in the indoor air quality is drastically increasing. Among various indoor air pollutants, $CO_2$ is one of the most severe environmental concerns. Ventilation is commonly used to keep low $CO_2$ concentration in the passenger cabin. However, ventilation may worse the indoor air quality problem in case of subway because the tunnel is seriously polluted by particulate matters. In this study, an alternative way to remove $CO_2$ was suggested. The adsorption of $CO_2$ by $CO_2$ adsorbent was studied. Zeolite modified with base was prepared, and $CO_2$ removal performance was tested in $4m^3$ and $24m^3$ environmental chambers. It was found that $CO_2$ adsorbent could effectively remove $CO_2$ in the chambers.

  • PDF

A Study on Estimation of Air Tightness for Train (철도차량의 공기압 기밀도 평가에 관한 연구)

  • Nam, Seong-won
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.576-584
    • /
    • 2016
  • In this study, we measured the air tightness of a train using pressure variation in tunnels. To estimate the air tightness of a train is essential to comprehend the pressure variation of the cabin because air tightness is strongly related with ear discomfort. If we can determine the air tightness, we can predict the pressure variation of the cabin. Also, ear discomfort is a problem that can be caused in a high speed train, as well as in Korea's Great Train Express. In this study, we compared the various international standards for ear discomfort and estimated the air tightness of each vehicle based on experimental data obtained using the ITX, KTX and KTX-sancheon(honam) vehicles. The internal pressure variation of the trains is numerically calculated using the air tightness value. The results are good compared to the experimental results. Instead of flap type ventilation, in the future, continuous ventilation equipment will be needed for speed-up.

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).