• Title/Summary/Keyword: CaCo2

Search Result 2,353, Processing Time 0.034 seconds

Theoretical Study of the Structures and Binding Energies of Ca+-(CO)n and Ca+-(CO2)n (n=1,2) (Ca+-(CO)n과 Ca+-(CO2)n (n=1,2)의 구조와 결합에너지에 대한 이론 연구)

  • Park, Gil-Soon;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • The optimized structures and vibrational frequencies for $Ca^+-(CO)_n$ and $Ca^+-(CO_2)_n$ (n=1,2) complexes were calculated with MP2 and B3LYP methods employing 6-311++G(2d,p) basis sets. Also the binding energies were investigated for all complexes to compare the stabilities. For $Ca^+-(CO)_n$ C-bonded complexes are more stable than O-bonded complexes. Two stable conformations, linear and $C_{2v}$ form, are possible for $Ca^+-(CO)_2$ complexes and the $C_{2v}$ form is more stable than the linear form. $Ca^+-(CO_2)_2$ also has two possible conformations and linear form has slightly lower energy than $C_{2v}$ form.

Effect of Limestone Powder on Hydration of $C_{3}A-CaSO_{4}$ $\cdot$ $2H_{2}O$ system ($C_3A-CaSO_4\cdot2H_2O$ 계의 수화반응에 미치는 석회석미분말의 영향)

  • Lee Jong-Kyu;Chu Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.349-352
    • /
    • 2005
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4\cdot2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_{3}A$ was delayed by addition of $CaCO_{3}$ powder. The delay effect was enhanced by increasing of $CaCO_{3}$ content and finer powder of $CaCO_{3}$ addition. After consumption of $CaSO_4\cdot2H_2O$, the reaction of $CaCO_{3}$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_{3}$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4\cdot2H_2O-CaCo_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_{3}$ addition and finer $CaCO_{3}$ powder addition, the delayed ettringite formation can be prevented.

  • PDF

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

The CO2 Emission in the Process of Cement Manufacture Depending on CaO Content (시멘트 생산과정에 따른 CaO 함량과 CO2의 발생량)

  • Kim, Sang-Hyo;Hwang, Jun-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.365-370
    • /
    • 2013
  • In this study, contents of limestone in cement manufactured by six domestic plants for Portland cement were investigated in terms of the strength and its relation to the $CO_2$ emission due to limestone material and its physical properties in cement manufacturing process. the relationship among CaO content, compressive strength, and $CO_2$ emission was surveyed for the limestone quantity in decomposition reaction and the loss of limestone quantity contained in each cement. As a result of $CO_2$ emission calculation for unit cement, it was found that the $CO_2$ emission due to decomposition of limestone was occupied 67% of total emission quantity. Furthermore, there was a difference in $CO_2$ emission quantity depending on the cement manufacturing process management. Also, it was shown that fossil fuel usage and material loss had a major influence as main factors of $CO_2$ emission. An increase in the CaO content in cement resulted in an increase in the compressive strength. On the contrary, CaO content and compressive strength were reduced with the growth of loss quantity of limestone. It was verified that the material and process management were more effective than CaO yield in cement manufacturing for $CO_2$ emission with the growth of $CO_2$ emission quantity. Pozzolanic materials such as PFA and GGBS in concrete mix affected the price, $CO_2$ emission and development of strength of concrete.

Ca-Alginate에 고정화된 Calcium Carbonate를 완충제로 사용한 Bifidobacterium longum의 배양 증대와 저장 안정성

  • Lee, Gi-Yong;Yu, Won-Gyu;Kim, Ji-Yeon;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.203-206
    • /
    • 2000
  • Calcium carbonate $(CaCO_3)$ bead immobilized with alginate were developed as buffer system to enhance the cultivation efficiency of bifidobacteria. When Bifidobacteriuim longum KCTC 3128 and HLC 3742 were independently cultivated in 2.5-liter fermenter buffered the $CaCO_3$ bead, NaOH, $Na_2CO_3$, and $NH_4OH$. The proliferation of bifidobacteria and their storage stability were higher in culture broth buffered $CaCO_3$ beads than in culture broth buffered with NaOH, $Na_2CO_3$, and $NH_4OH$. Therefore, $CaCO_3$ bead may be useful as a buffer to enhance of the cultivation efficiency and viability of bifidobacteria.

  • PDF

Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass (CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Myung-Soo;Kim, Kwan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_2O_3-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_2O_3$, $CaCO_3-Al_2O_3$ mixture, and $CaCO_3-Al_2O_3$ compound ($CaAl_2O_4$), respectively, were used. The addition of $Al_2O_3$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_2O_3$ mixture and $CaAl_2O_4$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_2O_4$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.

CA Storage for Ginger Depending on CO2 Concentrations (탄산가스 농도에 따른 생강의 CA 저장효과)

  • 정문철;이세은
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.133-137
    • /
    • 1998
  • In order to establish effectiveness of CA storage and adequate CO2 concentration, it was investigated the quality chanties of Singer during CA storage for 150 days at different CO2 concentrations ranging from 3% to 12% and 3% fixed oxygen concentration. Weight loss tend to decrease with increase of CO2 concentrations. Sprouting ratio and the loss of gingerol was shown to be less as CO2 concentration increase but to be more than control stored at 12$^{\circ}C$, 95% RH within the concentration less than 6% CO2.

  • PDF

Effect of reaction temperature on the particle size and crystal shape of precipitated calcium carbonate (반응온도가 침강성탄산칼슘의 입도 및 형상에 미치는 영향)

  • 송영준;박찬훈;조동성
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.38-45
    • /
    • 1995
  • The objective of this study was to investigate the effect of temperature on the formation of CaCO, polymorphs(i.e.,calcite, aragonite, vaterite) and on the crystal shape of CaCO,.The reaction systems were rnvestigated at the temperature range of 2.0%-85.3r, at the fixed cmditions ofconcentration and pressure, 2X10-' M, atomospheric pressure, respectively.The reaction systems studied include a Ca(HCO.,),-Air bubble, O Ca(OH)s-CO,, @ Ca(OH),-H,CO, ,Ca(OH1,-Na>CO,, O Ca(OH),-K,CO,, @ Ca(OH),-(NH,),CO,, D CaC1,-Na,CO,, CaC1,-K3C03, 8 CaC1,-(NH,,),CO,, 0 Ca(N0,X-Na,CO,, 03 Ca(N0,X-QCO,. 0 Ca(NO,),-(NH,XCO,. The results obtained are summarizedas follows:Calcite is formed at the temperature range of 2t-80"C and the highest calcite yield was obtained at 30%.Aragonite begins to be formed at the temperature range of 41.0%-53.0%. and the higher temperature is thehigher yield is obtained. pH of the reaction system affect the yield of aragonite, and the yield reaches the highestpercentage at the pH range of 10.0-11.0, and at the conditions of pH 12.3 or over, aragonite is scarcely formed.Vaterlle is fnrmed at the temperature range of 40.0% or less, and transites utterly to calcite within 10-60mmutes in the case of bemg residenced in mother liqmd which C1 is not contained, and within 140hours inthe case of containing CI-.s in the case of containing CI-.

  • PDF

Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구)

  • Kim, Jae Gang;Shin, Jae Ran;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In this study, recycling sludge water of Ready-mixed concrete, and was carried out to optimize the system for recycling of the $CO_2$. The most important process in the liquid phase using a carbonation reaction can be recovered ready-mixed concrete is a process for the $Ca^{2+}$ release. $Ca^{2+}$ concentration of the experiment relative to the pH being lowered by the acidic substance during elution was performed. $CO_2$ was trapped in the MEA solution using a generator flue gas. In ready-mixed concrete can be synthesized $CaCO_3$ up to 11kg/1ton. The resulting $CaCO_3$ analysis results show that it is possible to use paper industry.

Fundamental Characteristics of CO2-cured Mortar with Varied Rates of Blast Furnace Slag Fine Powder Substitution (고로슬래그 미분말 치환율에 따른 이산화탄소 양생 모르타르의 기초 물성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • This research elucidates the fundamental properties of carbon dioxide (CO2)-cured mortar as influenced by varying substitution rates of blast furnace slag fine powder. The findings indicate that CO2 curing enhances the formation of calcium carbonate (CaCO3), contributing to pore reduction and the early development of strength. While calcium hydroxide (Ca(OH)2) plays a more pivotal role in the primary development of strength compared to CaCO3, an increase in the substitution rate of blast furnace slag fine powder results in reduced production of Ca(OH)2. Nonetheless, the maintenance of strength through CaCO3 formation is observed even after the depletion of Ca(OH)2, suggesting that the required performance can be sustained post-exposure to the atmosphere following CO2 curing. It is noted that substitution rates exceeding 50% lead to performance deterioration due to CO2, highlighting the necessity for careful adjustment of the substitution ratio.