• Title/Summary/Keyword: Ca2-ATPase activity

Search Result 126, Processing Time 0.024 seconds

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF

ATPase Activity and Solubility of Actomyosin Extracted from Muscle of Silky Fowl (오골계에서 추출한 Actomyosin 의 ATPase 활성 및 용해도)

  • 정인철;문윤희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.827-831
    • /
    • 1994
  • Investigation on the extractability, Mg2+-, Ca2+ , EDTA-ATPase activity and solubility of actomyosin prepared from leg and breast muscle of silky fowol were as follows. The extractability of actomyosin in leg and breast muscle was 779mg/100g and 1, 318mg/100g respectively, breast muscle was higher than leg muscle . Mg2+-ATPase activity of actomyosin was high inionic strength 0.02-0.10 and Mg2+ATPase activity of low ionic strength was higher than high ionic strength not related to the part. Ca2+ ATPase activity was high in ionic strength 0.05-0.13, the activity of leg muscle was higher that breast muscle. And EDTA-ATPase activity showed low in low ionic strength and showed high in high ionic strength, and increased greatly depend ionic strength up to 0.4. The solubility of actomyosin was not different in leg and breast muscle , the solution started in KCI concentration of 0.3M and ended in DCI concentration of 0.4M.

  • PDF

Studies on the ATPases of Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle (家兎골격근小胞體切片의 ATPase 에 관한 硏究)

  • Ha, Doo-Bong;Eunsook Song;Park, Hee-Soon
    • The Korean Journal of Zoology
    • /
    • v.17 no.2
    • /
    • pp.93-102
    • /
    • 1974
  • Fragmente dsarcoplasmic reticulum of rabbit skeletal muscle was prepared and biochemical properties of its ATPase activity were studied. The ATPase of the fragments could be distinguished as $Mg^++ - ATPase and (Mg^++ - Ca^++)$-ATPase. The activity of $(Mg^++ - Ca^++)$-ATPase was predominant over that of $Mg^++$-ATPase in the temperature range of $0 \\sim 40^\\circ C$ and in the pH 6.4$\\sim$7.6. At higher temperatures the predominance of $(Mg^++ - Ca^++)$-ATpase was far greater. The apparent energies of activation were 14 kcal/mole for $Mg^++$-ATPase, 21kcal/mole for $(Mg^++ - Ca^++)$-ATPase, and 18kcal/mole for total ATPase. Changes in pH and Mg concentration did not alter the energies of activation of these ATPases. The Km values of these ATPases were found to be 0.36 mM for $Mg^++$-ATPase, 2.20 mM for $(Mg^++ - Ca^++)$-ATpase, and 0.86 mM for total ATPase.

  • PDF

Effects of Electrical Stimulation on the Biochemical Properties of Plaice, Paralichthys olivaceus, Sarcoplasmic Reticulum and Myofibrils (넙치 근소포체 및 근원섬유의 생화학적 특성에 미치는 전기자극의 영향)

  • KIM Tae-Jin;CHOI Young-Jun;KIM Dong-Su;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.545-552
    • /
    • 1998
  • This study was undertaken to clarify the effects of electrical stimulation on the biochemical properties of plaice sarcoplasmic reticulum and myofibrils at early period of death. The plaices were electrically stimulated (110V/60 Hz) In sea water bath for 15, 35, and 60 seconds, and killed instantly by spiking at the head. Killed samples were investigated for the changes in $Ca^{2+}$-ATPase activity of FSR (fragmented sarcoplasmic reticulum), LSR (light SR), HSR (heavy SR), and SDS-PAGE pattern of FSR. $Ca^{2+}$-ATPase activity of FSR increased until $45^{\circ}C$ and inactivated over $50^{\circ}C$. $Ca^{2+}$-ATPase activity of FSR remarkably decreased according to the duration of electrical stimulation. Myofibrillar $Mg^{2+}$-ATPase activity of electrically stimulated plaices in the presence of $Ca^{2+}$ was higher than that of sample instantly killed by spiking. $Mg^{2+}$-ATPase activity of myofibrils increased by electrical stimulation and the activity decreased during storage at $5^{\circ}C$. Myofibrillar $Mg^{2+}$-ATPase activity in sample killed by spiking was not affected by $Ca^{2+}$ ion. Myofibrillar $Mg^{2+}$-ATPase activity of electrically stimulated sample in the absen-re of $Ca^{2+}$ decreased during storage at $5^{\circ}C$, whit $Mg^{2+}$-ATPase activity in unstimulated sample did not show any change. $Ca^{2+}$-sensitivity of myofibrils showed no differences between electrically stimulated sample and sample killed by spiking, and the was no change during at $5^{\circ}C$.

  • PDF

Inhibitory Effect of Thapsigargin on the Activities of $H^+-ATPases$ in Tomato Roots (토마토 뿌리조직 $H^+-ATPase$ 활성에 미치는 Thapsigargin의 저해효과)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.212-216
    • /
    • 2005
  • Thapsigargin is a specific antagonist of SR/ER-type $Ca^{2+}-ATPase$ in animal tissue, and it was used to characterize the microsomal ATPases prepared from the roots of tomato. When $10\;{\mu}M$ thapsigargin was added, it inhibited the microsomal ATPase activity by 30%. The thapsigargin-induced inhibition was dose-dependent. Since the activity of $Ca^{2+}-ATPase$ is very low in the roots of tomato tissue, it is possible that thapsigargin inhibits the activities of major $H^+-ATPases$ located in plasma and vacuolar membranes. The inhibitory effect of thapsigargin was reduced when the vacuolar $H^+-ATPase$ activity was inhibited by ${NO_3}^-$. However, the effect of thapsigargin was not observed on the $H^+-ATPase$ activity located in the plasma membrane. These results suggest that thapsigargin inhibits the vacuolar $H^+-ATPase$ activity in the roots of tomato.

The Effects of Caffeine on the ATPase Activity and the Calcium Uptake of the Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle (筋小胞體의 ATPase 活性과 칼슘吸收能에 미치는 Caffeine의 영향)

  • Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.15 no.4
    • /
    • pp.163-182
    • /
    • 1972
  • The effects of caffeine on the ATPase activity and Ca uptake of the fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were studied. The ATPase activity of the heavy fraction (2,000-8,000xG) was stimulated by caffeine while that of other lighter fractions was not. It is suggested that the enhancement of the ATPase by the caffeine treatment. The Ca uptake of the heavy and middle (10,000-20,000xG) fractions was inhibited by caffeine when measured at the medium Ca concentration higher than 200 nmoles/mg protein, while only that of the heavy fraction was inhibited when measured at the Ca concentration below 200 nmoles/mg protein. Experiments with dicumarol suggested that caffeine inhibits the Ca uptake of the mitochondria as well as that of the sarcoplasmic reticulum and that the inhibition of the Ca uptake by caffeine in the low Ca concentration in the heavy fraction is due to the inhibition of the mitochondrial Ca uptake by caffeine. It appeared highly probable that the potentiation of muscle contraction caused by caffeine is solely due to the inhibition of the Ca uptake by and to the release of the accumulated Ca from the sarcoplasmic reticulum.

  • PDF

Biochemical Properties of Myofibrillar Protein in Olive Flounder by the Sex (성별에 따른 넙치 근원섬유단백질의 생화학적 특성)

  • KIM Tae-Jin;YOON Ho-Dong;LEE Sang-Min;KIM Kyung-Gyl
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.349-354
    • /
    • 1997
  • Myotibrillar ATPase activity, thermostability and composition of muscle protein were investigated to elucidate biochemical properties regard with rearing period and sex of olive flounder. Myofibrillar ATPase activity of male olive flounder reared for 6, 12 and 20 months was stronger than that of female one. $Mg^{2+}\;(+Ca^{2+})-ATPase$ activity of both female and male fish decreased with the elapse of rearing period, and the activity of male was higher than that of female far beyond the rearing periods. The high correlationship between the weight gain and myofibrillar ATPase activity was observed. The thor mostability of male myofibrillar protein was higher than that of female. Subunit composition of the myofibrillar and sarcoplasmic protein did not show difference between the both sex of the fish.

  • PDF

Changes in the $Ca^{2+}-,\;Mg^{2+}-dependent$ Adenosine Triphosphatase Activity and Ultrastructure of Marine Fishes by Partial Freezing -I. Denaturation of Yellowtail Myofibrillar ATPase During Cold Storage- (해산어의 부분동결에 의한 $Ca^{2+}-,\;Mg^{2+}-dependent$ Adenosine Triphosphatase 활성 및 근섬유의 미세구조의 변화 -I. 저온저장에 의한 방어 근원섬유 단백질의 변성-)

  • Choi, Kyoung-Ho;Park, Chan-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.1
    • /
    • pp.123-130
    • /
    • 1989
  • Myofibrillar protein(myofibil) was prepared from Yellowtail fish (Seriola quinqueradiata), and then, it was stored at $0^{\circ}C$(ice-cooling), $-3.5^{\circ}C$(partial freezing) and $-20^{\circ}C$(freezing). Another myofibrils were prepared from the fish stored with ice-cooling, partial freezing and freezing for a week as the maximum. Denaturation of muscle protein during the storage was investigated by the measurement of $Ca^{2+}-$ and $Mg^{2+}-ATPase$ activity. Specific activity of $Ca^{2+}-\;and\;Mg^{2+}-ATPase$ associated with Yellowtail myofibrils was 0.155 and $0.149\;{\mu}\;mole$ Pi/min/mg of protein, respectively, before storgae. ATPase activity of myofibils did not show any significant difference between $0^{\circ}C$ and $-3.5^{\circ}C$ whereas it was decreased faster at $-20^{\circ}C$ than at $0^{\circ}C$ or $-3.5^{\circ}C$. ATPase activity of myofibirls extracted from the fish stored for a week was 1.2-1.8 times higher than myofibils stored with ice-cooling or partial freezing while it was 2.5-3 times higher than that with freezing. Apparent denaturation constant of $Ca^{2+}-ATPase$ of myofibrils was between 0.48-0.65, and it was 2-3 times higher than that of $Mg^{2+}-ATPase$. The constant of myofibrils extracted from the fish did not show significant difference between $Ca^{2+}-\;and\;Mg^{2+}-ATPase$.

  • PDF

Studies on the Calcium Uptake and ATPase Activity of the Fragmented Sarcoplasmic Reticulum (筋小胞體의 Ca 吸收能과 ATPase 活性에 관한 硏究)

  • Ha, Doo-Bong;Han, Jang-Hyun
    • The Korean Journal of Zoology
    • /
    • v.14 no.2
    • /
    • pp.43-56
    • /
    • 1971
  • The Ca uptake by the fragmented sarcoplasmic reticulum of the rabbit skeletal muscle was measured under various concentrations of K, Mg, Caffeine, procaine and quinine. The ATPase activity of this reticular membrane was measured under the same conditions simultaneously. The saturation of Ca uptake was almost completed within 1 minute. The Ca uptake was inhibited by high concentrations of K (above 50 mM) and Mg (above 1 mM)in the absence of ATP. When ATP is present, however, the Ca uptake did not reflect the concentration of K, while it increased greatly as the concentration of Mg was increased. Caffeine and procaine caused the inhibition of Ca uptake in the presence of ATP, but quinine did not. The ATPase activity of the membrane was little affected by the concentration of K, while it was enhanced in the presence of Mg. Caffeine, procaine and quinine did not influence the ATPase activity.

  • PDF

Studies on the ATpase Activity , Relaxing Activity and Calcium Uptake of Rabbit Skeletal Muscle Microsomes (골격근 microsome 의 ATMase 의 활성, 골이이오나용, 및 Ca 흡수작용에 관한 연구)

  • 하두봉
    • The Korean Journal of Zoology
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 1967
  • 토끼의 골격근 homogenate에서 23,000$\times$G, 60 분간의 원심분리와 얻은 근 microsome의 ATPase 활성, 근수축에 대한 이완작용, 및 Ca 의 흡수작용을 여러 가지 조건에서 측정하였다. ATPase 활성은 Ca++ Mg++ 양 이온의 존재에 의하여 활성화되며 , 5 mM Mg++ 의 존재하에서는 Ca++ 의 최적농도는 0.1mM이다. Oxalate의 존재하에서는 1 mM 의 Ca++ 이 최적농도이므로 oxalate의 작용은 불용성 Ca-oxalate의 작용은 불용성 Ca-oxalate를 microsome vesicle so 및 medium 내에 침전시켜 유리 Ca++ 농도를 저하시키는 것이라고 생각된다. Microsome의 이완작용은 조제후 120 시간까지 시간에 따라 감소되어 가나, 그이 ATPase 활성은 거의 변화가 없는 것으로 보아 Ca++ + Mg++ -의존성 ATPase 는 이완작용에는 직접 관련이 없는 것으로 해석된다. Oxalatedmlwhswo는 microsome의 Ca++ 흡수량을 현저히 증대시키며 동시에 흡수포화에 도달하는 시간을 지연시킨다. Oxalate의 이러한 효과도 Ca-oxalate의 형성에 기인하는 것으로 해석된다. Microsome 내에 축적되는 Ca 의 량은 ATP 농도가 커질수록 많아진다. 그러나 축적된 Ca 의 량과 ATP 농도사이에 화학정량론적 관계는 없는 것같다.

  • PDF