• Title/Summary/Keyword: Ca2+ photosynthesis

Search Result 44, Processing Time 0.028 seconds

Effects of Salt Stress on Photosynthesis, Free Proline Content and Ion Content in Tobacco. (염스트레스가 담배식물의 광합성, proline 및 이온함량에 미치는 영향)

  • Lee, Sang-Gak;Shin, Ju-Sik;Seok, Yeong-Seon;Bae, Gill-Kwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.215-219
    • /
    • 1998
  • This experiment was conducted to investigate effects of NaCl concentration on photosynthetic rate, free proline content and ion content in tobacco. As NaCl concentration was increased growth was retarded. The decrease growth characteristics(shoot/root ratio was 2.0) at 90mM NaCl indicated that this concentration could be a limiting level. As NaCl concentration was increased photosynthetic rate, transpiration rate, and water use efficiency were decreased. Photosynthetic rate was highly decreased at 60mM NaCl. There was no significant difference between transpiration rate and water use efficiency. Leaf water potential was decreased as NaCl concentration was increased, in that twice lower at 30mM than that of control and drop largely at 120mM NaCl. Free proline content was increased as NaCl increased until 120mM NaCl and drop at 150mM NaCl. The $Ca^{2+}$, $Mg^{2+}$, and $K^+$ contents were increased until NaCl concentration was 120mM. The $Na^{2+}$ content was slowly increased as NaCl concentration increased until 120mM NaCl, and largely increased at 150mM NaCl. There was no significant difference between $Cl^-$ and NaCl treatments except 30 mM NaCl in which $Cl^-$ content was higher than that of control. As NaCl concentration was increased $K^+/Na^+$ ratio was decreased. The negative correlation between $K^+$ and $Na^+$, and positive correlation between $K^+/Na^+$ and protein content were found.

  • PDF

Seasonal Mineral Nutrient Absorption Characteristics and Development of Optimum Nutrient Solution for Rose Substrate Culture in a Closed Hydroponic System (순환식 수경재배에서 재배시기별 장미의 무기이온 흡수특성과 적정 배양액 조성)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom;Lee, Ju-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.354-362
    • /
    • 2009
  • This study was performed to develop a suitable nutrient solution for standard rose substrate culture in a closed hydroponic system. 1/4, 1/2, 2/3 and 1 strength of the nutrient solution made by Japan National Institute of Vegetable and Tea Science (JNIVT) were supplied. The photosynthesis rate, quality and growth of cut flower were higher in the 1/2 and 2/3 strength of nutrient solution during high and low temperature period. Based on the above results, optimum nutrient solutions (UOS) were composed by nutrientwater (n/w) absorption ratio with 1/2S ($NO_{3^-}N$ 6.8, $NH_{4^-}N$ 0.7, $PO_{4^-}P$ 2.0, K 3.8, Ca 3.0, Mg 1.2, $SO_{4^-}S$ $1.2me{\cdot}L^{-1}$) at high temperature season and 2/3($NO_{3^-}N$ 9.7, $NH_{4^-}N$ 0.8, $PO_{4^-}P$ 2.2, K 5.0, Ca 3.9, Mg 1.5, $SO_{4^-}S$ $1.5me{\cdot}L^{-1}$) at low temperature season. The results of suitability examination showed that the EC level in newly composed nutrient solution (UOS) was more stable than other nutrient solutions due to its large amount of calcium and potassium. The growth of cut flower cultivated with UOS was higher than those of other nutrient solutions. Especially, the yield of cut flowers in UOS nutrient solution increased 1.4 times than that of other nutrient solution treatments. Consequently, the new nutrient solution investigated in this experiment was suitable for rose cultivation in a closed hydroponic system.

Effect of Submergence and Air Exposure of the Shoot on Growth, Nutrient Uptake and Photosynthesis in Monochoria vaginalis Presl. (물달개비 경엽(莖葉)의 침수여부(沈水與否)에 따른 생장(生長), 양분흡수(養分吸收) 및 광합성(光合成) 비교(比較))

  • Soh, C.H.;Yang, K.S.;Kwon, Y.W.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 1996
  • Growth, nutrient uptake and photosynthesis as affected by submersion of shoot in pickerel weed (Monochoria vaginalis Presl.) were determined. The shoots of pickerel weeds in hydroponic culture were subjected to the submerged or emerged condition at 3- or 5-leaf stage for 8 or 10 days. Under submerged condition, growth in plant height was enhanced, but leaf number, leaf area, fresh and dry weight were reduced compared to those under the emerged condition. Similar responses in growth to submergence were obtained with the pickerel weeds rooted in the soil. Under submergence, chlorophyll content increased during the first 2 days, but thereafter remarkably decreased at 3-leaf stage and after the first 4 days at 5-leaf stage. Compared to the emerged condition, uptakes of $NH_4\;^+$-N, $NO_3\;^-$-N, $P_2O_5$ and $K^+$ were reduced, but uptakes of $Ca^{++}$ and $Mg^{++}$ increased under the submerged condition. Photosynthetic rate of shoot under water, measured by $CO_2$electrode, showed the maximum by 210 ${\mu}$moles $HCO_3\;^-$/g F.W. at the 8th day after submergence(DAS) at 3-leaf stage and 320 ${\mu}$moles $HCO_3\;^-$/g F. W. at 6 DAS at 5-leaf stage. These results indicate that pickerel weeds grow much better when the shoot is air-exposed and are less tolerable to submergence at 3 leaf-stage than at 5-leaf stage.

  • PDF

Effects of Microspraying of Water and Coating by White Materials on Fruit Sunburn Occurrence for 'Fuji'/M.9 Apple Tree (미세살수와 흰색 코팅제 도포가 '후지'/M.9 사과나무 과실 일소 발생에 미치는 영향)

  • Song, Yang-Yik;Park, Moo-Yong;Yang, Sang-Jin;Nam, Jong-Chul;Sagong, Dong-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • This study was carried out to compare and analyze control methods of the sunburn occurrence that affected 'Fuji'/M.9 planting systems in Korea from 2001 to 2003. It is very important to control temperature of the surface of fruits, because sunburn may occur when the temperature of fruit surfaces reaches $40^{\circ}C{\sim}45^{\circ}C$ due to high air temperature and sunlight during growing periods. As control methods of the sunburn occurrence, white coating materials such as $CaCO_3$ or kaolin were applied four times at two-week intervals from late June, and microspraying of water was conducted when air temperature was over $31^{\circ}C$ from late July to mid-August. Both methods were effective for preventing the sunburn occurrence and improving fruit quality by decreasing peel's temperature of fruits and increasing photosynthesis.

Comparison of Photosynthetic Responses in Allium microdictyon Prokh and Allium ochotense Prokh from Atmosphere-Leaf Vapor Pressure Deficit (VPD) (대기-엽 수증기압차에 의한 산마늘과 울릉산마늘의 광합성 반응 비교)

  • Lee, Kyeong-Cheol;Kim, Ha-Sun;Noh, Hee-Sun;Kim, Jongh-Wan;Han, Sang-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.171-176
    • /
    • 2012
  • This study was conducted to investigate the effect of atmosphere-leaf vapor pressure deficit (VPD) in Allium microdictyon Prokh. and Allium ochotense Prokh. The vapor pressure deficit (VPD) was rapidly increased with increasing temperature and decreasing relative humidity. Taken as a whole, the stomatal transpiration reaction was slightly late with increading of VPD. Maximum photosynthetic rate at high-VPD condition was 5.98 ${\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ in Allium microdictyon, which was a little lower than 6.59 ${\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ in Allium ochotense, respectively. After 2 p.m, stomatal transpiration of Allium microdictyon at the high VPD condition were rapidly decreased. Ci/Ca began to decline sharply at 8 a.m and showed the lowest value at 2 p.m, The results showed that Ci/Ca decreased with being used $CO_2$ in the mesophyll intercellular space for photosynthesis. In high VPD condition, The water potential values showed the highest at 5 a.m, and the lowest at 1 p.m in high VPD condition. The water saturation deficits (WSD) in high VPD condition showed about 1.5 times higher than in low VPD condition. The results indicated that physiological activities in Allium microdictyon is more limited from high VPD conditions.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Physiological Responses of Rice Plant as Influenced by Salinity Stress Using Sea Water (해수 농도에 따른 수도의 몇가지 생리적 반응)

  • 송연상;최원열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.6
    • /
    • pp.483-488
    • /
    • 1993
  • This study was conducted to obtain the basic information for easily judgement to level of salinity stress of the reclaimed land. Rice varieties used were Nakdongbyeo and Chilsungbyeo. In seedling stage, 13 day-old seedlings were subjected to salt solution (0, 30, 60, 90mM) for 8 days. In reproductive stage, 30 day-old seedlings were transplanted 3 hills(3 seedlings /hill) per plastic pot (diameter 28${\times}$depth 30cm). Salinity stress was given by immersing pot in the salt solution(sea water) with 4 concentrations(0, 30, 60, 90mM)for 8 days at booting stage. The stomatal resistance was increased with salinity concentrations. Salinity stress appeared to be more sensitive in seedling stage than in reproductive stage in each concentrations. The photosynthesis was decreased in salinity treatment. Salt-treated periods influenced unfavorably stomatal resistance in each stages. The leaf chlorophyll content was remarkably decreased by increasing salt concentrations. The absorption of Na+ and Cl ̄ were increased as salt concentration in the culturing medium became higher, but there was no appearent difference in the absorption of K+, Mg++, and Ca++. The plant height and root length were decreased in salinity treatment. The inhibitory effect of salinity stress on root growth was more severe than in shoot growth. The stomatal resistance could have been used as bio-information.

  • PDF

Effects of Mn on the Growth and Nutrient Status of Pinus densiflora Seedlings in Nutrient Culture Solution (소나무 묘목의 생장 및 영양상태에 미치는 Mn의 영향)

  • 이충화;이승우;진현오;정진현;이천용
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.349-352
    • /
    • 2002
  • The effects of Mn on growth and nutrient status of Pinus densiflora seedlings grown in a nutrient culture solution were investigated. Mn concentrations was added as manganese chloride at 0, 30 and 60ppm to the nutrient culture solution. The 2-year-old seedlings were transplanted into the solution maintained at pH 4.0, and grown for 90 days in a greenhouse. The Mn treatment induced a significant reduction in the dry weight growth of the seedlings. The relative growth rate(RGR) and net assimilation rate(NAR) of the seedlings decreased with increasing Mn concentrations in the nutrient culture solutions. For the nutrient status of the seedlings, Ca and Mg content in trunk and root was least in 60ppm Mn treatment, and Mn content in needle was about 3 times more than in root. Also the net photosynthetic rate of the seedlings was significantly lower both in 30ppm and 60ppm Mn treatment compared to them in 0ppm. This result suggests that the reductions in the RGR and NAR of the seedlings may be resulted from the inhibition of net photosynthesis by the mixed effect of lower nutrient uptake of roots and excess accumulation of Mn in needle.

Effect of Root Zone Cooling on Growth Responses and Tuberization of Hydroponically Grown 'Superior' Potato (Solanum tuberosum) in Summer

  • Chang, Dong-Chil;Jeong, Jin-Cheol;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.340-345
    • /
    • 2006
  • A potato (Solanum tuberosum L. cv. Superior) cultivar was grown in aeroponic cultivation system to investigate the effect of root zone cooling in summer. Based on their nutrient uptake, growth responses, and tuberization, the possibilities for potato seed production were determined. Although shoot growth and early tuberization increased in the conventional non-cooling root zone system (root zone temperature of $25\pm2^{\circ}C$), stolen growth, photosynthesis, transpiration rate and number of tubers produced were higher in the cooling root zone system ($20\pm2^{\circ}C$) than in the non-cooling system. Increasing root zone temperature above $25^{\circ}C$ stimulated absorption of K more than T-N, P, Ca, Fe and Mn. On the other hand, root zone temperatures in the range of $20^{\circ}C$ to $25^{\circ}C$ did not affect Mg contents. The lower uptake and supply to leaves of T-N, Fe and Mn at the high root zone temperature promoted early tuberization and advanced haulm senescence. The results stress the importance of keeping root zone temperature to as low as below 20, particularly in summer under temperate Bone.

Bio-Green' Functional Water Supply Influences Mineral Uptake and Fruit Quality In Tsugaru Apples (‘바이오 그린’ 기능수 처리가 사과 쓰가루 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.71-79
    • /
    • 1997
  • Commercial Bio- Green(B.G.) functional water was manufactured through a series of processes : water - ultra-purification - adding catalysts - energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters per plant of B.G. functional water were supplied to the orchard soil under canopy of 10 year- old ‘Tsugaru’/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. pH and content of Ca and Mg of orchard soil were increased by supply with B.G. functional water. However, P$_2$ $O_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh tissue and anthocyanin of fruit skin were increased by the treatment. B.G functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment enhanced Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit decreased, while fruit firmness increased by the treatment during storage.

  • PDF