• 제목/요약/키워드: Ca-type

검색결과 1,721건 처리시간 0.027초

Nimodipine as a Potential Pharmacological Tool for Characterizing R-Type Calcium Currents

  • Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.511-519
    • /
    • 2001
  • Nimopidine, one of dihydropyridine derivatives, has been widely used to pharmacologically identify L-type Ca currents. In this study, it was tested if nimodipine is a selective blocker for L-type Ca currents in sensory neurons and heterologous system. In mouse dorsal root ganglion neurons (DRG), low concentrations of nimodipine $(<10\;{\mu}M),$ mainly targeting L-type Ca currents, blocked high-voltage-activated calcium channel currents by ${\sim}38%.$ Interestingly, high concentrations of nimodipine $(>10\;{\mu}M)$ further reduced the 'residual' currents in DRG neurons from ${\alpha}_{1E}$ knock-out mice, after blocking L-, N- and P/Q-type Ca currents with $10\;{\mu}M$ nimodipine, $1\;{\mu}M\;{\omega}-conotoxin$ GVIA and 200 nM ${\omega-agatoxin$ IVA, indicating inhibitory effects of nimodipine on R-type Ca currents. Nimodipine $(>10\;{\mu}M)$ also produced the inhibition of both low-voltage-activated calcium channel currents in DRG neurons and ${\alpha}_{1B}\;and\;{\alpha}_{1E}$ subunit based Ca channel currents in heterologous system. These results suggest that higher nimodipine $(>10\;{\mu}M)$ is not necessarily selective for L-type Ca currents. While care should be taken in using nimodipine for pharmacologically defining L-type Ca currents from native macroscopic Ca currents, nimodipine $(>10\;{\mu}M)$ could be a useful pharmacological tool for characterizing R-type Ca currents when combined with toxins blocking other types of Ca channels.

  • PDF

Identification of Three Types of Voltage Dependent $Ca^{2+}$-Channels in Mouse Follicular Oocytes

  • Bae, In-Ha;Yoon, Sook-Young;Yoon, Yong-Dal;Kim, Moon-Kyoo;Kim, Hae-Kwon
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.53-58
    • /
    • 1999
  • The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in mouse follicular oocytes. Three types of voltage-dependent $Ca^{2+}$-channels were shown to exist in the follicular oocytes for the first time, the P/Q-type $Ca^{2+}$-channel, the N-type $Ca^{2+}$-channel, and the L-type $Ca^{2+}$-channel. Among proven $Ca^{2+}$-channels distributions of the P/Q-type $Ca^{2+}$-channel and L-type $Ca^{2+}$-channel showed localized staining (clustered pattern) on the oolemma. The distribution of the P/Q-type $Ca^{2+}$-channel showed all localized staining, and the range of localized staining was from 1 to 8 in staining intensity. As the staining intensity increased from 1 to 8, the number of localized staining decreased. The L-type $Ca^{2+}$-channel are homogeneously stained (29.4%-54.2%), while some of them (around 28.7%-44.1%) showed localized staining on the oolemma. However, the rest of them showed no staining at all (17.1%- 26.5%). On the contrary, the N-type $Ca^{2+}$-channel showed mostly homogeneous staining, while nonstaining oocytes were around 33.8%. The rest showed localized staining (10%). However, staining intensity was much weaker than those of the P/Q-type and L-type $Ca^{2+}$-channel. In fact, the N-type $Ca^{2+}$-channel has been known to exist only in neurons (from ectoderm origin), but it is unknown how the N-type $Ca^{2+}$-channel exists in the follicular oocytes (from mesoderm origin). Further studies are needed to examine the expression of $Ca^{2+}$-channels during the developmental stages of the oocytes.

  • PDF

Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교 (Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites)

  • 고상모;김자영
    • 한국광물학회지
    • /
    • 제15권4호
    • /
    • pp.243-257
    • /
    • 2002
  • Ca-형과 Na-형 벤토나이트는 물성의 차이로 인하여 그 용도를 달리하며, 국내에서는 Ca-형 벤토나이트만 산출되기 때문에 산업체에서는 Na-형으로 변환시켜 토목용이나 주물용으로 활용되고 있다. 이 연구는 Ca-형과 Na-형 벤토나이트의 몇 가지 물성을 비교하여 그 차별성을 명확히 밝히고자 한다. 또한 HDTMA(Hexadecyltrimethylammonium)나 CP(Cetylprydinium)와 같은 유기양이온을 Ca-형과 Na-형 벤토나이트에 치환시켜 유기 양이온과 벤토나이트와의 흡착 특성을 비교 하고자 시도되었다. Na-형 벤토나이트는 Ca-형 벤토나이트에 비해 강한 알카리성, 매우 높은 팽윤성과 점도를 나타내나, 양이온 교환능과 MB(Methylene Blue) 흡착양은 변화를 보이지 않는다. 탁도는 Na-형 벤토나이트가 높으며 시간의 변화에 따라서도 거의 변화가 초래되지 않았으나, Ca-형 벤토나이트는 단시간 내 급격하게 응집이 초래되었다. 열 분석 결과 큰 차이는 보이지 않으나 흡착수와 층간수의 분해는 Na-형 벤토나이트가 보다 저온에서 빨리 일어나며, 완전한 구조의 분해는 Ca-형 벤토나이트가 Na-형 벤토나이트보다 저온에서 용이하게 일어났다. HDTMA와 CP를 벤토나이트에 치환케 되면 대체적으로 강한 층간팽창이 초래되어 저면 간격이 40 $\AA$ 이상 늘어남으로써 공간을 제공하여 연속적인 흡착이 초래되었다. HDTMA의 흡착은 양이온 교환능의 200% 이상을 치환하였을 때 거의 포화상태에 달하여 저면 간격이 $37~38\AA$으로 팽창이 초래되었으나, CP의 흡착은 양이온 교환능의 140% 이상을 치환케 되면 저면 간격이 $40\AA$에 달하여 거의 포화되었다. 이는 CP가 HDTMA보다 용이하게 층간팽창을 초래시키고 흡착이 일어남을 의미한다. CP와 Ca-형 및 Na-형 벤토나이트와의 흡착거동은 L형의 흡착등온선을 나타내었으며, 매우 규칙적이고 일관성 있게 흡착이 일어남으로써 안정한 상태를 유지하였다. 또한 층간 교환성 양이온 종에 관계없이 유기양이온 흡착거동은 거의 동일하게 일어났다.

생쥐 난자의 활성화에 따른 $Ca^{2+}$-channel의 분포 변화에 관한 연구 (Studies of Changes of $Ca^{2+}$-channel Distribution in the Activated Mouse Ova)

  • 장연수;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2001
  • Objective: In muscle and neuronal cells, calcium channels have been classified by electrophysiological and pharmacological properties into (1) voltage-dependent $Ca^{2+}$-channel (1) P/Q-type $Ca^{2+}$-channel (2) N-type $Ca^{2+}$-channel (3) L-type $Ca^{2+}$-channel (4) T-type $Ca^{2+}$-channel (5) R-type $Ca^{2+}$-channel. The present study was done in order to investigate whether there is any difference in $Ca^{2+}$-channel distribution between activated and normally fertilized embryos. Methods: The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in parthenogenetically activated 2-cell embryos by ethanol and $SrCl_2$ treatment. These 2-cell embryos were obtained by exposure to 6% ethanol for 6 min and to 10 mM $SrCl_2$ for 2h. Results: P/Q-type $Ca^{2+}$-channels and L-type $Ca^{2+}$-channels have been identified. Whereas, three type of $Ca^{2+}$-channel P/Q-type, N-type, L-type have been identified in 2-cell embryos fertilized in vivo. Conclusion: Activation by ethanol was faster than those by $SrCl_2$. However, there was difference in DAB staining of the embryos between ethanol and $SrCl_2$ treatment (87.7% and 54.1 %). Intensity of staining was also different between ethanol- and $SrCl_2$-treated group. However, it has not been known why there was some difference in DAB staining and staining intensity in the present study.

  • PDF

식물 분류단위 특이적인 칼슘대사의 생리생태학적 특성 (Ecophysiological characteristcs of Plant Taxon-Specific Calcium Metabolism)

  • 추연식;송승달
    • The Korean Journal of Ecology
    • /
    • 제21권1호
    • /
    • pp.47-63
    • /
    • 1998
  • In order to compare species-specific calcium metabolism, we collected 127 species belonging to 40 different families grown on various habitats including saline, limestone, wetland during the 1996 vegetation period, and analyzed their inorganic ion contents. Plants investigated were divided into 5 groups according to their physiological properties: 1) Chenopodiaceae, Aizoaceae, Caryophyllaceae, Portulacaceae and Phytolaccaceae of Centrospermales and Polygonaceae (Polygonales had a little water-soluble $Ca^{2+}$ but contained high contents of insoluble $Ca^{2+}$ particularly as Ca-oxalate (Chenopodiaceae type), 2) Some plant species such as Rosaceae produced oxalate in amounts insufficient to precipitate all incoming $Ca^{2+}$ and thus contained a surplus of dissolved $Ca^{2+}$ (Rosaceae type), 3) The contents of water-soluble $Ca^{2+}$ in plant species of Crassulaceae. Plantaginaceae, Asclepiadaceae, and Zygophyllaceae were equal to or greater than those of K ($K/Ca{\leq}1$; Crassulaceae type), and 4) K/Ca ratios of Compositae were significantly fluctuated depending on species and soil $Ca^{2+}$ level of their habitats (Compositae type). 5) Certain monocots (Gramineae, Cyperaceae, Juncaceae), in contrast to the dicotyledonous plant families mentioned above, showed a very distinct type of calcium metabolism, that is, the K/Ca ratios of 8~10 were maintained indifferently in the species and their habitat types (Graminae type). These results plants within the same taxon have similar physiological aspects as weel as morphological attributes. To understand calcium metabolism of certain plant species, therefore, it is desirable to approach on the basis of physiological concept (calciotroph or calciophobe) rather than the ecological one (calcicole or calcifuge).

  • PDF

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.

Protease-Activated Receptor 2 Activation Inhibits N-Type Ca2+ Currents in Rat Peripheral Sympathetic Neurons

  • Kim, Young-Hwan;Ahn, Duck-Sun;Kim, Myeong Ok;Joeng, Ji-Hyun;Chung, Seungsoo
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.804-811
    • /
    • 2014
  • The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type $Ca^{2+}$ currents ($I_{Ca-N}$) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated $Ca^{2+}$ currents ($I_{Ca}$), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on $I_{Ca}$. This PAR-2-induced inhibition was almost completely prevented by ${\omega}$-CgTx, a potent N-type $Ca^{2+}$ channel blocker, suggesting the involvement of N-type $Ca^{2+}$ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited $I_{Ca-N}$ in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ${\omega}$-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type $Ca^{2+}$ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type $Ca^{2+}$ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals.

Ginsenosides Inhibit N-, p-, arid Q-types but not L-type of $Ca^{2+}$ Channel in Bovine Chromaffin cells

  • Seok Chol;Jung, Se-Yeon;Kim, Hyun-Oh;Kim, Hack-Seang;Hyewhon Rhim;Kim, Seok-Chang;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제24권1호
    • /
    • pp.18-22
    • /
    • 2000
  • 앞의 연구에서 우리는 진세노사이드가 신경세포에 존재하는 high-threshold voltage-dependent $Ca^{2+}$ channel을 억제한다는 것을 발표하였다. 그러나, 이러한 연구는 진세노사이드가 여러 칼슘 채널subtypes중 어느 특정 칼슘 채널만을 선택적으로 조절한다는 것을 보여주지는 않았다. 따라서 이 연구에서 우리는 여러 칼슘 채널subtypes에 선택적으로 작용하는 약물 혹은 toxins을 이용하여 진세노사이드가 어느 종류의 칼슘 채널 subtypes를 억제하는가를 bovine chromaffin cell을 이용하여 연구하였다. 사용한 물질은nimodipine(L-type 칼슘 채널 길항제), $\omega$-conotoxin GVIA (N-type $Ca^{2+}$ channel 길항제), $\omega$-agatoxin IVA(P-type 칼슘 채널 길항제)이었다. 연구 결과 진세노사이드는 bovine chromaffin 세포에 존재하는 high-threshold 칼슘 current을 투여 농도별로 억제하였다. $IC_{50}$/은 약 120 $\mu$g/ml인 것으로 나타났다. nimodipine은 진세노사이드에 의한 칼슘 currents억제 작용에 영향을 미치지 않은 것으로 나타났다. 그러나, $\omega$-conotoxin GVIA, $\omega$-agatoxin IVA 및 nimodipine+$\omega$-conotoxin GVIA+$\omega$-agatoxin IVA을 처리한 세포에서는 진세노사이드에 의한 칼슘 currents억제 작용이 현저하게 줄어 들었다. 이러한 연구 결과들은 진세노사이드가 L-type 칼슘 채널은 억제하지 않고, 주로 N-, p-, 및 Q-type칼슘 채널을 억제한다는 것을 보여주고 있다

  • PDF