• Title/Summary/Keyword: Ca-source

Search Result 750, Processing Time 0.031 seconds

Comparison of Physicochemical Properties and Antioxidative Activities of Sunflower Sprout According to Germination Day (발아일수에 따른 해바라기 싹의 이화학적 특성 및 항산화성 비교)

  • Roh, Kyung-Rea;Ko, Seong-Hee;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • It is well known that sunflower (SF) sprout has more beneficial effects than SF seed due to increased levels of phytochemical components such as vitamins, total phenolics, and isoflavones during germination. This study investigated the physicochemical properties and antioxidative activities of SF seed during both germination and cultivation. In a proximate analysis, the water content of SF groat was 9.17% and then increased to 15.32% on the 11th day after seeding. On a dry weight basis, crude fat content decreased while the contents of carbohydrates, crude protein, and crude ash increased. As cultivation proceeded, the contents of minerals were in decreasing order of K, Mg, Ca, Na, Zn, Fe, Mn, and Cu, in which SF sprout cultivated for 9 or 11 days contained the highest mineral contents. Though vitamin C was not detected on SF groat, the content of vitamin C continuously increased up to the 5th day of cultivation and then decreased gradually. Vitamin E content in SF groat was higher than that in SF sprout. It was also found that the vitamin E content in SF sprout was the highest on the 5th day of cultivation. Daidzin was not detected in SF groat, but its concentration reached a maximum on the 5th day of cultivation in SF sprouts. Furthermore, higher amounts of daidzein were observed on the 3rd, 5th, and 9th days of cultivation. The highest total isoflavone content was observed on either the 3rd or 5th day of cultivation. The highest content of total phenolics was observed on the 5th of cultivation. When DPPH radical and peroxyl radical scavenging activities of SF sprout were measured in order to measure antioxidant efficacy, it was found that 5 day-cultivated SF sprout had the highest scavenging activities. In conclusion, SF sprout cultivated for 9 or 11 days was found to be a good source of minerals. Furthermore, the fifth-day after seeding was the optimal time for the production of SF sprout with effective natural antioxidant activity and high amounts of functional components such as vitamins, total phenolics, and isoflavones.

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Effect of different sources and inclusion levels of dietary fat on productive performance and egg quality in laying hens raised under hot environmental conditions

  • Kim, Jong Hyuk;Lee, Han Kyu;Yang, Tae Sung;Kang, Hwan Ku;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1407-1413
    • /
    • 2019
  • Objective: This experiment aimed to investigate the effect of different sources and inclusion levels of dietary fat on productive performance and egg quality in laying hens raised under hot environmental conditions. Methods: A total of 480 Hy-Line Brown laying hens at 31 wk of age were randomly allotted to 1 of 5 experimental diets. The control diet contained 2,800 kcal/kg nitrogen-corrected apparent metabolizable energy with no fat addition. Four additional diets were prepared by adding 2.0% or 4.0% of animal fat (AF) or soybean oil (SO). Energy and nutrient concentrations were consistent among all diets. Diets were fed to hens for 4 weeks. Average daily room temperature and humidity were $26.7^{\circ}C{\pm}1.52^{\circ}C$ and $77.4%{\pm}4.50%$. The heat stress index was approximately 76, indicating that hens were raised under heat stress conditions. Results: Final body weight (BW) was greater (p<0.05) for hens fed diets containing 2.0% or 4.0% AF than for those fed the control diet or diets containing 2.0% or 4.0% SO. The BW gain and feed intake were greater (p<0.05) for hens fed diets containing additional AF or SO than those fed the control diet. Eggshell thickness was the greatest (p<0.05) for hens fed the control diet, but the least (p<0.05) for hens fed diets containing 4.0% SO. Egg yolk color was the greatest (p<0.05) for hens fed the control diet, but the least (p<0.05) for hens fed diets containing 4.0% SO. Conclusion: Inclusion of supplemental fat (AF and SO) in diets exhibits preventative effects on BW loss for hens raised under hot environmental conditions when energy and nutrient concentrations in diets were maintained. The effects were greater for AF than for SO. However, inclusion of supplemental fat in diets decreases eggshell thickness and egg yolk yellowness, possibly due to a reduction in Ca absorption and intake of egg yolk colorants.

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Catalytic Wet Gasification of Biomass Mixed Fuels (바이오메스 혼합연료의 습윤 촉매 가스화 연구)

  • Kang, Sung-Kyu;Lee, Seung-Jae;Ryu, In-Soo;Hur, Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.59-72
    • /
    • 2009
  • In order to utilize sewage sludge as a heat source of energy, it goes without saying that the fuel should be clean and pose no threat to the environment. As a consequent, it should not contain even minute quantities of heavy metals / impurities. The SOCA (Sludge-Oil-Coal- Agglomerates) fuel can meet all these requirements. SOCA being a solid fuel can be gasified for the production of clean energy. Wet catalytic gasification is the most appropriate process for SOCA containing nearly 60% water. It is important to note that the SOCA thus obtained inherits ca. 40~50% of sulfur from the coal used. It can poison the catalyst during catalytic gasification process. Consequently, it becomes important to choose a proper catalyst for the gasification. Calcium was found to be ideal choice as a catalyst for the gasification of SOCA. The optimal gasification was performed at $850^{\circ}C$ with water vapor. The role of fuel-N is of utmost importance in the gasification of SOCA. The gasification should be controlled to reduce the production of HCN to a minimum and enhance its conversion to $N_2$ and/or $NH_3$.

A Study on Multiplication Response of "Tricholoma matsutake" (Pine Mushroom) Conidio to Cultural Media Environment (송이균(松茸菌) (Tricholoma matsutake)의 배양환경(培養環境)에 대한 증식반응(增殖反應)에 관한 연구(硏究))

  • Kim, Chang Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.64 no.1
    • /
    • pp.33-41
    • /
    • 1984
  • This study was conducted to examine the physiology of pine mushroom mycelia cultured with various media for artificial culture of pine mushroom. The results obtained were as follows: 1) Among the various media, the medium composed of honey, boiled pine mushroom and soil extract fluid, fibrous root extract fluid, dry yeast, $KH_2PO_4$ inositol, folic acid, and biotin was the best for the growth of pine mushroom mycelium. 2) The optimum temperature for germinating pine mushroom spore and for culturing pine mushroom mycelium, was $24^{\circ}C$ and the optimum pH was 4.5. 3) There was no significant difference in growth between the mycelium separated from the tissue of pine mushroom sporophore and that separated from the spore. 4) No noticeable effect was found on the growth if such salts as $ZnSO_4$, $MnSO_4$, $MgSO_4$, $CaCl_2$ and ferric citrate were added to the Hamada's medium. 5) The addition of fibrous root extract promoted the growth of pine mushroom mycelium. 6) As a carbon source of artificial media, honey was more effective than glucose. 7) The culture infiltration of Mortierlla growing often in Fairy Ring was good for the growth of mycelium compared with the control. 8) The addition of fibrous root extract, inositol, biotin, and folic acid to artificial culture media was greatly effective in growth. When the temperature was lowered $19^{\circ}C$ after mycelium has appeared, the formation of primordium was observed.

  • PDF

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF