• Title/Summary/Keyword: Ca-ATPase

Search Result 232, Processing Time 0.029 seconds

Role of Regulators of G-Protein Signaling 4 in $Ca^{2+}$ Signaling in Mouse Pancreatic Acinar Cells

  • Park, Soon-Hong;Lee, Syng-Ill;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.383-388
    • /
    • 2011
  • Regulators of G-protein signaling (RGS) proteins are regulators of $Ca^{2+}$ signaling that accelerate the GTPase activity of the G-protein ${\alpha}$ -subunit. RGS1, RGS2, RGS4, and RGS16 are expressed in the pancreas, and RGS2 regulates G-protein coupled receptor (GPCR)-induced $Ca^{2+}$ oscillations. However, the role of RGS4 in $Ca^{2+}$ signaling in pancreatic acinar cells is unknown. In this study, we investigated the mechanism of GPCR-induced $Ca^{2+}$ signaling in pancreatic acinar cells derived from $RGS4^{-/-}$ mice. $RGS4^{-/-}$ acinar cells showed an enhanced stimulus intensity response to a muscarinic receptor agonist in pancreatic acinar cells. Moreover, deletion of RGS4 increased the frequency of $Ca^{2+}$ oscillations. $RGS4^{-/-}$ cells also showed increased expression of sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type 2. However, there were no significant alterations, such as $Ca^{2+}$ signaling in treated high dose of agonist and its related amylase secretion activity, in acinar cells from $RGS4^{-/-}$ mice. These results indicate that RGS4 protein regulates $Ca^{2+}$ signaling in mouse pancreatic acinar cells.

Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

  • Wang, Ju-Hua;Xue, Xiu-Heng;Zhou, Jie;Fan, Cai-Yun;Xie, Qian-Qian;Wang, Pan
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.335-339
    • /
    • 2015
  • Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $HCO_3{^-}$ in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

Changes in the Properties of Myofibrillar Proteins from Broiler Meat during Cold and Frozen Storage (육계육의 냉장 및 동결저장 중 근원섬유 단백질의 특성 변화)

  • 박창식;문윤희
    • Korean Journal of Poultry Science
    • /
    • v.14 no.2
    • /
    • pp.137-143
    • /
    • 1987
  • This study was carried out to compare the changes in the extractability, biological activity, and solubility of myofibrillar proteins and actomyosins during storage period at 4$^{\circ}C$ and -20$^{\circ}C$in pectoral. and leg muscle of broiler meat. 1. The results obtained are as fellows ; The extractabilities of myofibrillar proteins in pectoral and leg muscle were increased gradually to 7-days during storage at 4$^{\circ}C$ and decreased slightly during frozen storage at -20$^{\circ}C$. The extractabilities of actomyosins in pectoral and legmuscle were not greatly changed during cold storage and decreased gradually during frozen storage. 2. The Ca$\^$2+/-ATP ase activities of myofibrillar proteins in the both muscles were not greatly changed to 7-days during cold storage, and in the case of frozen storage, those were highest on the 2nd week, thereafter decreased with storage period. The Ca$\^$2+/-ATPase activities of actomyosins in pectoral and leg muscle were decreased sightly only frist day during cold storage and decreased gently during frozen storage. 3. Myofibrillar proteins in the both muscles were solubilized completely at 0.20M KCl in fresh meat, at 0.25M (pectoral) and 0.30M KCl (leg) in the cold storage, and at 0.30M KCl in the frozen storage. Actomyosins of both muscles were solubilized completely at 0.40M KCl in fresh meat, cold and frozen storage.

  • PDF

Studies on the Myofibrillar Proteins Part 2. New Procedure for Extraction of Regulatory Proteins from Myofibrils (근원섬유단백질에 관한 연구 (제2보) 근수축 조절단백질의 새로운 정제방법)

  • Yang, Ryung;Kim, Chul-Jai;Yu, Ju-Hyun;Lee, Hyuk-Sin;Cho, Young-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.199-208
    • /
    • 1974
  • An attempt was made to study on new method for the extraction of the regulatory proteins from myofibrils, and the procedures for the preparation of desensitized actomyosin and for complete extraction of troponin-tropomyosin complex were developed. When myofibrils were treated through the procedures developed in this study, actomyosin obtained had no Ca-sensitivity, indicating that Ca-sensitizing protein factor had been removed completely from myofibril. Consequently, it was concluded that the procedures developed in this study were convenient to test whether Ca-sensitizing proteins has been removed or not. When Mg-activated ATPase activity of myofibril were measured, the myofibrillar ATPase turned into the actomyosin type ATPase with the progress of the treatment. This result was interpreted to show that the regulatory proteins of the myofibril seems to play a cementing role on the structure of myofibril. When supernatant containing the regulatory proteins were fractionated with $(NH_4)_2SO_4$ saturation solution, regulatory proteins, ${\alpha}-actinin$ and troponia-tropomyosin complex, could be obtained and they showed their typical phyoislogical activity which modify the actin-myosin interaction. The amount of troponin-tropomyosin complex in myofibril was 72 mg per g myofibril. This result was in good agreement with the results reported by many investigators, and therefore it was concluded that our procedures for the extraction of troponin-tropomyosin complex were desirable to study on the quantitative analysis of troponin-tropomyosin complex.

  • PDF

The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization (탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing

  • Cho, Chung-Hyun;Lee, Keon Jin;Lee, Eun Hui
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.378-387
    • /
    • 2018
  • Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, $Ca^{2+}$ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic $Ca^{2+}$ level in skeletal muscle fibers is governed mainly by movements of $Ca^{2+}$ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated $Ca^{2+}$ entry (SOCE), a $Ca^{2+}$ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.

Purification and Sidedness of Sarcolemma from Canine Ventricle (개 심실 형질막의 분리 및 그 방향성에 관한 연구)

  • 이신웅;구정옥;이정수
    • YAKHAK HOEJI
    • /
    • v.30 no.1
    • /
    • pp.31-41
    • /
    • 1986
  • Sarcolemmal membrane fraction from canine ventricle was isolated from the discarded pellet after the first homogenization in the isolation procedure of sarcoplasmic reticulum (Method 1) and the protein yield, purity, and sidedness of this preparation were compared to those of sarcolemmal fraction prepared by method of Lee et al. (Method 2) and a slight modification of original protocol of Jones et al. (Method 3). Method 1 differed from Method 2 essentially only in that vigorous homogenization was carried out by omnimixer and homogenization medium containing 30mM Tris-maleate was used in the first step. The sarcolemmal fraction was enriched from 45 to 50 and 29-fold in [$^3H$] ouabain, [$^3H$] DHA, [$^3H$] QNB binding and $Na^+$, $K^+$-ATPase activity, respectively, compared to homogenate. Total $Na^+$, $K^+$-ATPase activity of highly sarcolemma enriched fraction was 144.6$\pm$16.4$\mu\textrm{mol}$ Pi/mg protein/hr, which was about 85%, of total ATPase activity, and the yield of the preparation was 15.7 mg protein per 100g of starting ventricular tissue. The sarcolemmal preparation supported $^{45}Ca^{2+}$-uptake in the presence of ATP but this uptake was not dependent on oxalate. Sarcolemmal $Na^+$, $K^+$-ATPase activity and detectable [$^3H$] ouabain binding were increased about 32% and 35%, respectively, by pretreatment of sarcolemmal fraction with optimal concentration of sodium dodecylsulfate (0.3-0.4mg/mg protein), suggesting that this preparation contained about 24% of sealed rightside-out vesicles, 26% of sealed inside-out vesicles, and 5001o of freely permeable (leaky) form. This procedure showed the highest protein yield and leaky population, compared to Method 2 and 3. On the other hand, sarcolemmal fraction prepared by Method 2 and 3 showed low value in protein yield but comtained high population of inside-out (46%) and rightside-out (49%) vesicles, respectively, compared to present procedure (Method 1). The results indicate that vigorous homogenization decreases the population of sealed sarcolemmal vesicles but increases the sarcolemmal protein yield per gram tissue and that this procedure is available for further purification of sarcolemmal fraction and for the receptor binding study of sarcolemma.

  • PDF

Myocardial Function and Metabolic Energetics in Low Flow Ischemia and with $\beta$-Adrenergic Stimulation in Spontaneously Hypertensive Rat Hearts

  • Kang, Young-Hee;Kang, Jung-Sook;Park, Han-Yoon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • The effects of cardiac ischemia-reperfusion and $\beta$-adrenergic stimulation on metabolic function and energetics were investigated in Lan gendorff-perfused spontaneously hypertensive rat (SHR) hearts. Sarcoplasmic reticulum {TEX}$Ca^{2+}${/TEX}-dependent ATPase and cardiac lactate dehydrogenase (LDH) are additionally studied. The perfusion medium (1.0 mM {TEX}$Ca^{2+}${/TEX}) contained 5 mM glucose(+5 U/L insulin) and 2 mM pyruvate as substrates. Global ischemia was induced by reducing perfusion pressure of 100 to 40 cm {TEX}$H_{2}${/TEX}O, followed by 20 min reperfusin. Isoproterenol (ISO, 1$\mu$M) was infused for 10 min. Coronary vascular resistance and myocardial oxygen consumption ({TEX}$MVO_{2}${/TEX}) of SHR were increased in parallel with enhanced venous lactate during ischemia and reperfusion compared to those of Sprague Dawley (SD) hearts. Although ischemia-induced increase in venous lactate and combined adenosine plus inosine was abolished, coronary vasodilation produced in SD during reperfusion. In SHR, depressed reactive hyperemia was associated with a fall in cardiac ATP and CrP/Pi ratio and a rise in intracellular lactate/Pyruvate ratio. On the other hand, ISO produced coronary functional hyperemia and an increase in {TEX}$MVO_{2}${/TEX}. However, these responses were less than those in SHR hearts. The ATPase activity of SHR was attenuated in free {TEX}$Ca^{2+}${/TEX} concentrations used under basal condition and with ISO compared to that of SD. Venous lactate output and cardiac LDH activity were augmented in SHR as influenced by ISO. These results demonstrate that coronary reactive and functional hyperemia was dpressed in SHR, which cold be explained by alterations in the cytosolic phosphorylation potential and the cytosolic redox state manipulated by LDH, and by abnormal free calcium handling.

  • PDF

EFFECTS OF CAFFEINE AND 2,5-DI-(tert-BUTYL)-1,4-BENZOHYDROQUINONE ON BLUE LIGHT-DEPENDENT $H^+$ PUMPING IN GUARD CELL PROTOPLASTS FROM Vicia faba L.

  • Goh, Chang-Hyo;Shimazaki, Ken-Ichiro
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 1997
  • The sensory transduction processes of blue light in guard cells have been suggested the involvement of Ca$^{2+}$/calmodulin-dependent myosin light chain kinase (MLCK) or MLCK-like proteins. The source of Ca$^{2+}$ required for the signal transduction process was investigated in guard cell protoplasts (GCPs). The GCPs showed the typical H$^+$ pumping activity by blue light (200 $\mu$mol m$^{-2}$ s$^{-1}$) and fusicoccin (10 $\mu$M) under background red light (600 $\mu$mol m$^{-2}$ s$^{-1}$). The blue light-dependent H$^+$ pumping was not significantly affected by the externally changed Ca$^{2+}$ concentrations. The addition of 1 mM Ca$^{2+}$ in the bathing medium ratherly inhibited the H$^+$ pumping. In contrast, the blue light-dependent H$^+$ pumping was inhibited by caffeine and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), inhibitor of C$^{2+}$-ATPase in endoplasmic reticulum (ER) without inhibiting the H $^+$ pump. The inhibition by caffeine and BHQ was fully reversible. The extent of inhibition by caffeine and BHQ was larger when they were added together than when added separately. The results suggest that Ca$^{2+}$ required for the blue light-dependent H$^+$ pumping may be released from the intracellular Ca$^{2+}$ stores, probably ER in guard cells.

  • PDF

Functional Alterations of Sarcoplasmic Reticulum $Ca^{2+}$ Release Channel in Streptozotocin-induced Diabetic Rat Heart

  • Lee, Eun-Hee;Kim, Won-Tae;Kim, Young-Kee;Kim, Young-Hoon;Kim, Hae-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.67-67
    • /
    • 2001
  • Our previous studies showed that the relaxation defect of diabetic heart was due to the changes in the expressional levels of SR $Ca^{2+}$-ATPase and PLB. In the diabetic heart contractile abnormalities were also observed, and one of the mechanisms for these changes could include alterations in the expression and/or activity levels of various $Ca^{2+}$ regulatory proteins involving cardiac contraction.(omitted)

  • PDF