• Title/Summary/Keyword: Ca^{2+}-dependent\

Search Result 1,154, Processing Time 0.032 seconds

Epigallocatechin Gallate Activates Phospholipase D in Glioma Cells (교세포에서 Epigallocatechin Gallate에 의한 포스포리파제 D의 활성화)

  • Kim, Shi-Yeon;Kim, Joonmo;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2003
  • Epigallocatechin-3 Gallate (EGCG), a major constituent of green tea, has attracted increasing interest because of its many reported health benefits. Here we demonstrate for the first time that EGCG stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-\gama1$ mutant, and was dependent on intracellular $Ca^{ 2+}$, and possibly involved $Ca^{ 2+}$ calmodulin-dependent protein kinase II (CaM kinase II). Interestingly, EGCG induced translocation of PLC-\gama1$ from the cytosol to the membrane and PLC-\gama1$interaction with PLD1. Taken together, these results demonstrate for the first time that in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving a PLC-\gama1$ (inositol 1,4,5-trisphosphate-$Ca^{ 2+}$)-CaM kinase II-PLD pathway.

$Na^{+}/Ca^{2+}$ Exchange System in Atrial Trabeculae and Vascular Smooth Muscle of the Rabbit (토끼 심방근 및 혈관 평활근에서의 $Na^{+}/Ca^{2+}$ 교환기전에 관한 연구)

  • Kim, Hee-Ju;Moon, Hyung-Ro;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.13-29
    • /
    • 1988
  • In order to elucidate the regulatory mechanism of intracellular calcium ion concentrations, contractions or contractures induced by $Na^{+}-removal$, calcium-application or ouabain-treatment as an index of $Na^+/Ca^{2+}$ exchange activity were studied in atrial muscle or vascular smooth muscle (aorta and renal artery) of the rabbit. The magnitude of low sodium contractures in atrial trabeculae increased with sigmoid shape when external sodium concentrations were reduced to sodium-free condition, whereas that of calcium contracture intensified in a parabolic pattern when external calcium concentrations were elevated to 8 mM. $Na^{+}-removal$ contractures were induced in a duration-dependent manner to $K^{+}-free$ exposure and same findings were observed with ouabain treatment. $Na^{+}-free$ contractures were not affected by verapamil treatment, but stimulated by $100{\mu}M\;Mn^{2+}$ and inhibited by high concentrations of $Mn^{2+}\;(2{\sim}8mM)$ in a dose-dependent manner. Ryanodine which is known to suppress the release of calcium from internal store abolished spontaneous twitch contractions induced by $K^{+}-free$ solution, but had no effect on the development $Na^{+}-free$ contractures. Na-free contractures were not always induced in vascular smooth muscle preparations. Contractures by $O\;mM\;Na^+$ were usually seen in aorta, but not often in renal artery.$50\;mM\;K^+$, noradrenaline (NA) and angiotensin II (AII) always evoked very large contraction in all preparations of vascular smooth muscle. Contractures developed by $O\;mM\;Na^+$ were not sensitive to verapamil treatment as in atrial trabeculae, but were abolished by $100{\mu}M\;Mn^{2+}$. In contrast to $Na^{+}-free$ contractures, $Mn^{2+}(100{\mu}M)$ had no effect on the contractures induced by NA or 50 mM$K^+$. Caffeine in the concentration of 10 mM evoked transient contracture in the distal renal artery. The rate of spontaneous relaxation in caffeine contracture was dependent upon the concentrations of external sodium, and had double component of relaxation when the rate of relaxation was plotted in the semilogarithmic scale of relative tension versus time. Especially late components of relaxation had more direct relation to $Na^+$ concentrations. It could be concluded that $Na^+/Ca^{2+}$ exchange mechanism in the heart has a large capacity, inhibited by $Mn^{2+}$ but not by verapamil and ryanodine, while $Na^+/Ca^{2+}$ exchange system in vascular smooth muscle has a very low capacity especially in small artery, inhibited by low concentration of $Mn^{2+}\;(100{\mu}M)$ but not affected by verapamil and ryanodine.

  • PDF

Synthesis of CaO-Al2O3 System Clinker Using CaCO3 and Al2O3 (CaCO3와 Al2O3를 이용한 CaO-Al2O3계 클링커 합성)

  • Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.238-239
    • /
    • 2018
  • This paper presents the synthesis results of CaO-Al2O3 system clinker using the CaCO3 and the Al2O3 according to the synthesis methods dependent on the temperature. The purpose of this study is the formation of the CaO-Al2O3 system clinker containing high ratio of CaO·2Al2O3 (CA2). The maximum sintering temperature for the synthesis of CaO-Al2O3 compounds was 1250℃, 1300℃ and 1400℃. The CaO-Al2O3 compounds was sintered at the maximum sintering temperature for three hours. After sintering, the compounds was analyzed using X-ray diffraction method. The 12CaO·7Al2O3 (C12A7) and CaO·Al2O3 (CA) increased as elevating the maximum sintering temperature whereas the CA2 decreased. Especially, at the 1250℃ of maximum sintering temperature, the un-reacted CaO and Al2O3 was identified.

  • PDF

Calcium in Infectious Hematopoietic Necrosis Virus (IHNV) Infected Fish Cell Lines (Calcium in Infectious Hematopoietic Necrosis Virus (IHNV) Infected Fish Cell Lines)

  • Kim, Nam Sik;Heo, Gang Jun;Lee, Chan Hui
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.263-263
    • /
    • 1996
  • Infection of fish cells with IHNV resulted in gradual increase in cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ in CHSE, gradual decrease in $[Ca^{2+}]_i$ in FHM, and no significant change in RTG cells. The degree of $[Ca^{2+}]_i$ increase or decrease was dependent on the amount of infectious virus, and these $[Ca^{2+}]_i$ variations were maximal at 16 hours after virus infection (p. i.) in both cell lines. When the fish cells were infected with inactivated IHNV, evident variation in $[Ca^{2+}]_i$ was not observed. Thus, infectivity of IHNV appears to correlate with changes in $[Ca^{2+}]_i$ in virus-infected cells. These IHNV-induced $[Ca^{2+}]_i$ changes were partially blocked by cycloheximide, but not affected by cordycepin. It seems to be that virus-induced $Ca^{2+}$ variations were more related with protein synthesis than RNA synthesis. Various $Ca^{2+}$ related drugs were used in search for the mechanisms of the $[Ca^{2+}]_i$, changes following IHNV infection of CHSE cells. Decreasing extracellular $Ca^{2+}$ concentration or blocking $Ca^{2+}$ influx from extracellular media inhibited the IHNV-induced increase in $[Ca^{2+}]_i$, in CHSE cells. Similar results were obtained with intracellular $Ca^{2+}$ blockers. Thus it is suggested that both the extracellular and the intracellular $Ca^{2+}$ sources are important in IHNV-induced $[Ca^{2+}]_i$ increase in CHSE cells.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

Role of Intracellular $Ca^{2+}$ Signal in the Ascorbate-Induced Apoptosis in a Human Hepatoma Cell Line

  • Lee , Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1245-1252
    • /
    • 2004
  • Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the ascorbate-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas dantrolene, an intracellular $Ca^{2+}$ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular $Ca^{2+}$ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular $Ca^{2+}$ release mechanism may mediate ascorbate-induced apoptosis.

$Ca^{2+}$ Effect on Conversion of Exogenous 1-Aminocyclopropane-1-Carboxylic Acid to Ethylene in Vigna radiata Protoplasts

  • Seung-Eun Oh
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • The possibility that 1-aminocyclopropane-1-carboxylic acid (ACC)-uptake may be dependent on the H+-gradient established across the plsma membrane was tested in protoplasts isolated from 2.5 day old mungbean hypocotyls. The ACC-induced ethylene production was inhibited when the H+-gradient was collapsed by the treatment with carbonycyamide-p-trifluro-methoxy-phenylhydrazone (FCCP). Moreover, the treatment with o-vanadate, a specific inhibitor of plasma membrane H+-ATPase, caused the inhibition of ethylene production. The ACC-induced ethylene production was inhibited by the treatemnt with verapamil (Ca2+-channel blocker), or ethylene glycol-bis($\beta$-aminoethyl ether) N, N, N', N'-tetraacetic acid (EGTA) (Ca2+-chelator). In contrast, the ehtylene production was stimulated by the application of A23187 (Ca2+ ionophore). The inhibitory effect of EGTA in the ethylene producton was magnified in the presence of A23187. From these results, we suggest that the external Ca2+ influx to the cytosol resulted in the stimulatin of ACC oxidase activity after ACC-uptake resulting from a H+-gradient across the plasma membrane.

  • PDF