• Title/Summary/Keyword: CYP6A8

Search Result 83, Processing Time 0.031 seconds

Prediction and visualization of CYP2D6 genotype-based phenotype using clustering algorithms

  • Kim, Eun-Young;Shin, Sang-Goo;Shin, Jae-Gook
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.147-152
    • /
    • 2017
  • This study focused on the role of cytochrome P450 2D6 (CYP2D6) genotypes to predict phenotypes in the metabolism of dextromethorphan. CYP2D6 genotypes and metabolic ratios (MRs) of dextromethorphan were determined in 201 Koreans. Unsupervised clustering algorithms, hierarchical and k-means clustering analysis, and color visualizations of CYP2D6 activity were performed on a subset of 130 subjects. A total of 23 different genotypes were identified, five of which were observed in one subject. Phenotype classifications were based on the means, medians, and standard deviations of the log MR values for each genotype. Color visualization was used to display the mean and median of each genotype as different color intensities. Cutoff values were determined using receiver operating characteristic curves from the k-means analysis, and the data were validated in the remaining subset of 71 subjects. Using the two highest silhouette values, the selected numbers of clusters were three (the best) and four. The findings from the two clustering algorithms were similar to those of other studies, classifying $^*5/^*5$ as a lowest activity group and genotypes containing duplicated alleles (i.e., $CYP2D6^*1/^*2N$) as a highest activity group. The validation of the k-means clustering results with data from the 71 subjects revealed relatively high concordance rates: 92.8% and 73.9% in three and four clusters, respectively. Additionally, color visualization allowed for rapid interpretation of results. Although the clustering approach to predict CYP2D6 phenotype from CYP2D6 genotype is not fully complete, it provides general information about the genotype to phenotype relationship, including rare genotypes with only one subject.

Inhibitory effects of heavy metals on CYP1A expression in eel hepatocyte cultures (뱀장어 배양 간세포에서의 Cytochrome P4501A (CYP1A) 유전자 발현에 대한 중금속들의 억제효과)

  • Kwon, Hyuk-Chu;Maeng, Joon-Ho;Choi, Seong-Hee
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.245-254
    • /
    • 2010
  • Effects of heavy metal ions on the gene expression of cytochrome P4501A (CYP1A) were examined in cultured eel hepatocytes. When the expression of CYP1A mRNA was measured by RT-PCR after incubation of eel hepatocytes with benzo[$\alpha$]pyrene (B[$\alpha$]P) at concentrations of 10-8~10-5 M, the CYP1A expression increased with B[$\alpha$]P treatment in a dose dependent manner, showing significant increase at concentrations more than 10-7 M. When the eel hepatocyte was treated with cadmium (10-6 and 10-5 M), the expression of CYP1A was inhibited and especially at higher concentration (10-5 M). The inhibition of CYP1A expression by cadmium was also observed in cells treated with B[$\alpha$]P. In another study, effects of heavy metal ions on the expression of CYP1A were examined in cultured hepatocytes isolated from eel which was treated previously with B[$\alpha$]P in vivo. Hepatocytes isolated from the liver of eel taken at 48 hours after injection of B[$\alpha$]P (10 mg/kg) were cultured for 2 days with cadmium, copper, lead or zinc (10-6 and 10-5 M). The expression of CYP1A was found to be suppressed by the metal ions compared with the control in which CYP1A was induced with previous treatment of B[$\alpha$]P in vivo. The present results may provide an important basic information for studying the effects of heavy metal ions on CYP1A expression in other species of fish and studying toxicological mechanisms of heavy metal ions in aquatic livings.

Association of the CYP17-34T/C Polymorphism with Pancreatic Cancer Risk

  • Hussain, Shahid;Bano, Raisa;Khan, Muhammad Tahir;Khan, Mohammad Haroon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.71-75
    • /
    • 2016
  • Pancreatic cancer is a leading cause of fatality worldwide. Several population studies have been conducted on genetic diagnosis of pancreatic cancer but the results from epidemiologic studies are very limited. CYP17A gene has a role in disease formation but its influence on pancreatic cancer is unclear. A polymorphism in the 5'UTR promoter region of CYP17A1-34T/C (A1/A2) has been associated with multiple cancers. The aim of the current study was to assess associations of this polymorphism and socio-demographic risk factors with pancreatic cancer. A total of 255 and 320 controls were enrolled in the study, and were genetically analyzed through PCR-RFLP. Statistical analysis was conducted with observed genotype frequencies and odds ratios (ORs) and 95% CIs were estimated using unconditional logistic regression. The impact of socio-demographic factors was accessed through Kaplen-Meir analysis. According to our results, the A2/A2 genotype was significantly associated with pancreatic cancer (OR=2.1, 95%CI = 1.3-3.5). Gender female (OR=2.6, 95%CI=1.8-3.7), age group 80s/80+ years (OR=2.2, 95% CI=1.2-4), smoking both former (OR=4.6, 95% CIs=2.5-8.8) and current (OR=3.6, 95% CI=2-6.7), and family history (OR=7.1; 95%CI = 4.6-11.4) were also found associated with increased risk. Current study suggests that along with established risk factors for pancreatic cancer CYP17A1-34T/C may play a role. However, on the basis of small sample size the argument cannot be fully endorsed and larger scale studies are recommended.

Impact of CYP2D6 Polymorphisms on Tamoxifen Responses of Women with Breast Cancer: A Microarray-based Study in Thailand

  • Sukasem, Chonlaphat;Sirachainan, Ekaphop;Chamnanphon, Montri;Pechatanan, Khunthong;Sirisinha, Thitiya;Ativitavas, Touch;Panvichian, Ravat;Ratanatharathorn, Vorachai;Trachu, Narumol;Chantratita, Wasun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4549-4553
    • /
    • 2012
  • This study was designed to investigate the frequency of CYP2D6 polymorphisms and evaluate the association between genetic polymorphisms of CYP2D6 and tamoxifen therapeutic outcome in Thai breast cancer patients. We recruited 48 breast cancer patients who received adjuvant tamoxifen for evaluating CYP2D6 genetic polymorphisms using microarray-based technology. Associations between genotypes-phenotypes and disease free survival were analyzed. Median follow up time was 5.6 years. The mean age of the subjects was 50 years. The 3 common allelic frequencies were 43.8% ($^*10$), 36.5 ($^*1$) and 10.4% ($^*2$) which are related to extensive metabolizer (EM) and intermediate metabolizer (IM) with 70.8% and 29.2 %, respectively. No association between CYP2D6 genotypes and DFS was demonstrated. Nevertheless, exploratory analysis showed statistically significant shorter DFS in the IM group of post-menopause patients (HR, 6.85; 95%CI, 1.48-31.69; P=0.005). Furthermore, we observed statistically significant shorter DFS of homozygous $CYP2D6^*10$ when compared with heterozygous CYP2D6*10 and other genotypes (P=0.005). $CYP2D6^*10$ was the most common genotype in our subjects. Post-menopause patients with homozygous $CYP2D6^*10$ and IM have shorter DFS. To confirm this relationship, larger samples and comprehensively designed trials in Thailand are required.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads (기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상)

  • Min Jeong Jeon;Je-Won Yoo;Young-Mi Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.104-114
    • /
    • 2023
  • As plastic usage increases globally, the amount of plastic waste entering the marine environment is steadily rising. Microplastics, in particular, can be ingested by marine organisms and accumulated in their digestive tracts, causing harmful effects on their growth and reproduction. Cytochrome P450 (CYP) enzymes are known to metabolize various environmental pollutants as detoxification enzymes, but their role in crustaceans is not well understood. In this study, sequences of nine CYP genes (CYP370A4, CYP370C5 from clan 2; CYP350A1, CYP350C5, CYP361A1 from clan 3; CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1 from clan 4) were analyzed using conserved domains in the brackish water flea Diaphanosoma celebensis. Additionally, after exposure to three different sizes of polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L) for 48 hours, the expression of these nine CYP genes were investigated using real-time reverse transcription polymerase chain reaction (RT-PCR). The results showed that all CYP genes possessed conserved motifs, indicating that D. celebensis CYP has evolutionarily conserved functions. Among these CYP genes, the expression of CYP370C5, CYP360A1, and CYP4C122 showed a significant increase after exposure to 0.05-㎛ PS beads, suggesting their involvement in PS metabolism. This research will contribute to understanding the molecular mode of actions of microplastics on marine invertebrates.

Transcriptional Modulation of Metabolism-Related Genes in Brackish Water Flea Diaphanosoma celebensis Exposed to Mercury (수은 노출에 따른 기수산 물벼룩의 대사 관련 유전자의 발현 양상)

  • Min Jeong, Jeon;Je-Won, Yoo;Young-Mi, Lee
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.145-153
    • /
    • 2022
  • Mercury (Hg) is a major concern in marine environment because of their bioaccumulation and biomagnification properties, and adverse effects to aquatic organisms at even a trace amount. However, little information on the effects of Hg, compared to other heavy metals, is available in marine small crustaceans. Here, we investigated the transcriptional modulation of metabolism-related genes in the brackish water flea, Diaphanosoma celebensis after exposure to sublethal concentration (0.2, 0.4, 0.8 ㎍/l) of HgCl2 for 48 h. Relative mRNA expression levels of five detoxification enzyme-coding genes (cytochrome P450; cyp360A1, cyp361A1, cyp4AP3, cyp4C122, and cyp370C5) and six digestive enzyme-coding genes [alpha amylase (AMY), alpha amylase related protein (AMY-like), trypsin (TRYP), chymotrypsin-like protein (CHY), lipase (LIP), pancreatic lipase-related protein (PLRP)] were analyzed using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). As results, Hg increased the mRNA level of cyp370C5 (clan2) and cyp4AP3 (clan4) in a concentration dependent manner. A significant increase in TRYP mRNA was also concentration-dependently observed after exposure to Hg. These findings suggest that cyp370C5 and cyp4AP3 play a key role in Hg detoxification in D. celebensis, and Hg can affect energy metabolism by modulating the transcription of digestive enzyme. This study will provide better understanding the molecular effects of Hg in marine small crustacean.

The Effect of CYP2D6/3A5 Genotypes on Plasma Concentrations of Haloperidol after Adjunctive Treatment of Aripiprazole

  • Shim, Joo-Cheol;Ahn, Jung-Mi;Jung, Do-Un;Kong, Bo-Geum;Kang, Jae-Wook;Liu, Kwang-Hyeon;Shin, Jae-Gook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • Objectives To evaluate the drug interactions between aripiprazole and haloperidol, authors investigated plasma concentrations of those drugs by genotypes. Method Fifty six patients with a confirmed Diagnostic and Statistical Manual of Mental Disorders 4th edition diagnosis of schizophrenia were enrolled in this eight-week, double blind, placebo-controlled study. Twenty-eight patients received adjunctive aripiprazole treatment and twenty-eight patients received placebo while being maintained on haloperidol treatment. Aripiprazole was dosed at 15 mg/day for the first 4 weeks, and then 30 mg for the next 4 weeks. The haloperidol dose remained fixed throughout the study. Plasma concentrations of haloperidol and aripiprazole were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, week 1, 2, 4 and 8. $^*1$, $^*5$, and $^*10$ B alleles of CYP2D6 and $^*1$ and $^*3$ alleles of CYP3A5 were determined. The Student's T-test, Pearson's Chi-square test, Wilcoxon Rank Sum test and Logistic Regression analysis were used for data analysis. All tests were two-tailed and significance was defined as an alpha < 0.05. Results In the frequency of CYP2D6 genotype, $^*1/^*10$ B type was most frequent (36.5%) and $^*1/^*1$ (30.8%), $^*10B/^*10B$ (17.3%) types followed. In the frequency of CYP3A5 genotype, $^*3/^*3$ type was found in 63.5% of subjects, and $^*1/^*3$ type and $^*1/^*1$ were 30.8% and 5.8% respectively. The plasma levels of haloperidol and its metabolites did not demonstrate significant time effects and time-group interactions after adjunctive treatment of aripiprazole. The genotypes of CYP2D6 and 3A5 did not affect the plasma concentration of haloperidol in this trial. No serious adverse event was found after adding aripiprazole to haloperidol. Conclusion No significant drug interaction was found between haloperidol and aripiprazole. Genotypes of CYP2D6 and 3A5 did not affect the concentration of haloperidol after adding aripiprazole.

Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet

  • Park, Yongsoon;Park, Eun-Mi;Kim, Eun-Hye;Chung, Ill-Min
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.632-637
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The purpose of the current study was to investigate the effect of red pericarp glutinous rice rich in polyphenols (Jakwangchalbyeo, red rice) on serum and hepatic levels of cholesterol and hepatic protein expression linked to synthesis and degradation of cholesterol in a hypercholesterolemic mice diet as compared with brown rice. MATERIALS/METHODS: C57BL/6 male mice were randomly divided into four groups (n = 5 each), which were fed different diets for a period of 12 weeks: American Institute of Nutrition (AIN)-93G diet, AIN-93G diet with 2% cholesterol, brown rice with 2% cholesterol, or red rice with 2% cholesterol. RESULT: Consumption of red rice resulted in a significant decrease in serum level of low-density lipoprotein cholesterol and hepatic levels of triglyceride and total-cholesterol. Expression of acyl-coenzyme A cholesterol acyltransferase-2 (ACAT-2), sterol regulatory element binding protein-2 (SREBP-2), and 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase was decreased, while expression of phosphorylated adenosine monophosphate activated protein kinase (p-AMPK)/AMPK ratio, cholesterol 7-${\alpha}$-hydroxylase (CYP7a1), and sterol 12-${\alpha}$-hydroxylase (CYP8b1) was increased in mice fed red rice. Brown rice had similar effects on cholesterol metabolism, but the effect of red rice was significantly greater than that of brown rice. CONCLUSIONS: The current study suggested that red rice had a hypocholesterolemic effect by lowering hepatic cholesterol synthesis through ACAT-2, HMG-CoA reductase, and SREBP-2, and by enhancing hepatic cholesterol degradation through CYP7a1 and CYP8b1 in mice fed a hypercholesterolemic diet.