• Title/Summary/Keyword: CYP450

Search Result 436, Processing Time 0.029 seconds

Effect of Deep Sea Water on Phase I, Phase II and Ornithine Decarboxylase. (Phase I, phase II 효소 및 ornithine decarboxylase에 미치는 해양심층수의 영향)

  • Shon, Yun-Hee;Kim, Mee-Kyung;Jang, Jung-Sun;Jung, Eun-Jung;Nam, Kyung-Soo
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.381-386
    • /
    • 2008
  • Deep sea water was tested for cancer chemopreventive activity by measuring the activities of ${\beta}-$ naphthoflavone $({\beta}-NF)-induced$ cytochrome P 450 1A2 (CYP 1A2), quinone reductase (QR) and glutathione-S-transferase (GST), glutathione (GSH) levels, and ornithine decarboxylase (ODC) activity. The in vitro incubation of rat liver microsome with deep sea water (a hardness range of $100{\sim}1,000$) showed a hardness-dependent inhibition of CYP 1A2 activity. QR and GST activities were induced about $1.1{\sim}1.2$ fold with the treatment of deep sea water in murine hepatoma Hepa 1clc7 cells. In addition GSH levels were increased $1.3{\sim}1.4$ fold in a hardness range of $100{\sim}1,000$. The deep sea water showed 20.3 and 35.0% inhibition of 12-O- tetradecanoylphorbol-13-a-cetate (TPA)-induced ODC activity at hardness 800 and 1,000, respectively. Therefore, deep sea water is worth further investigation with respect to cancer chemoprevention or therapy.

Benzo[a]pyrene Cytotoxicity Tolerance in Testicular Sertoli Cells Involves Aryl-hydrocarbon Receptor and Cytochrome P450 1A1 Expression Deficiencies

  • Kim, Jin-Tac;Park, Ji-Eun;Lee, Seung-Jin;Yu, Wook-Joon;Lee, Hye-Jeong;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a potent carcinogen and is classified as an endocrine-disrupting chemical. In mammalian testes, Sertoli cells support spermatogenesis. Therefore, if these cells are negatively affected by exposure to xenotoxic chemicals, spermatogenesis can be seriously disrupted. In this context, we evaluated whether mouse testicular TM4 Sertoli cells are susceptible to the induction of cytotoxicity-mediated cell death after exposure to B[a] P in vitro. In the present study, while B[a]P and B[a]P-7,8-diol were not able to induce cell death, exposure to BPDE resulted in cell death. BPDE-induced cell death is accompanied by the activation of caspase-3 and caspase-7. Depolarization of the mitochondrial membrane and cytochrome c release from mitochondria were observed in benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated cells. These results indicate that TM4 cells are susceptible to apoptosis in a caspase-dependent manner. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that aryl hydrocarbon receptor (AhR) expression was almost undetectable in TM4 cells and that its expression was not altered after B[a]P treatment. This indicates that TM4 cells are nearly AhR-deficient. In TM4 cells, the CYP1A1 protein and its activity were not present. From these results, it is clear that AhR may be a prerequisite for CYP1A1 expression in TM4 cells. Therefore, TM4 cells can be referred to as CYP1A1-deficient cells. Thus, TM4 Sertoli cells are believed to have a rigid and protective cellular machinery against genotoxic agents. In conclusion, it is suggested that tolerance to B[a]P cytotoxicity is associated with insufficient AhR and CYP1A1 expression in testicular Sertoli cells.

Four Times of Relapse of Plasmodium vivax Malaria Despite Primaquine Treatment in a Patient with Impaired Cytochrome P450 2D6 Function

  • Choi, Sungim;Choi, Heun;Park, Seong Yeon;Kwak, Yee Gyung;Song, Je Eun;Shin, So Youn;Baek, Ji Hyeon;Shin, Hyun-IL;Oh, Hong Sang;Kim, Yong Chan;Yeom, Joon-Sup;Han, Jin-Hee;Kim, Min Jae
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • Plasmodium vivax exhibits dormant liver-stage parasites, called hypnozoites, which can cause relapse of malaria. The only drug currently used for eliminating hypnozoites is primaquine. The antimalarial properties of primaquine are dependent on the production of oxidized metabolites by the cytochrome P450 isoenzyme 2D6 (CYP2D6). Reduced primaquine metabolism may be related to P. vivax relapses. We describe a case of 4 episodes of recurrence of vivax malaria in a patient with decreased CYP2D6 function. The patient was 52-year-old male with body weight of 52 kg. He received total gastrectomy and splenectomy 7 months before the first episode and was under chemotherapy for the gastric cancer. The first episode occurred in March 2019 and each episode had intervals of 34, 41, and 97 days, respectively. At the first and second episodes, primaquine was administered as 15 mg for 14 days. The primaquine dose was increased with 30 mg for 14 days at the third and fourth episodes. Seven gene sequences of P. vivax were analyzed and revealed totally identical for all the 4 samples. The CYP2D6 genotype was analyzed and intermediate metabolizer phenotype with decreased function was identified.

Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar) (대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교)

  • Kang, Han Seung;Song, Jae-Hee;Kang, Hee Woong
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Variations in water temperature are known to affect almost every part of fish physiology. The rise in water temperature due to climate change can physically damage fish. This study was conducted to evaluate the health status of the Atlantic salmon (Salmo salar) at high water temperature (20℃) than the optimum water temperature (15℃). Liver tissue exerts important metabolic functions in thermal adaptation. Therefore, liver tissue was used in this study. The evaluation method is to develop the biomarker gene using NGS RNAseq analysis and to examine the expression pattern using RT-qPCR analysis. The NGS RNAseq analysis revealed 1,366 differentially expressed genes, among which 880 genes were increase expressed and 486 genes were decrease expressed. The biomarker genes are such as heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) and cytochrome P450 1A (CYP1A). The selected genes are sensitive to changes in water temperature through NGS RNAseq analysis. Expression patterns of these genes through RT-qPCR were similar to those of NGS RNAseq analysis. The results of this study can be applied to other fish species and it is considered to be useful industrially.

Effects of Amlodipine on the pharmacokinetics of Repaglinide (암로디핀이 레파그리니드의 약물동태에 미치는 영향)

  • Choi, Dong-Hyun;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2011
  • 암로디핀과 레파그리니드의 병용은 당뇨병의 합병증으로인한 고혈압 유발 시 병용 처방될 수 있다. 암로디핀과 레파그리니드의 약동학적 상호작용 연구를 위하여 암로디핀 (0.1 및 0.4 mg/kg) 과 레파그리니드를 흰 쥐에 경구(0.5 mg/kg) 및 정맥 (0.2 mg/kg) 투여하여 연구를 실시하였다. 암로디핀이 cytochrome P450 (CYP) 3A4 활성과 P-glycoprotein (P-gp)의 활성에 미치는 영향도 평가하였다. 암로디핀의 CYP3A4의 50% 효소활성억제는 $9.1{\mu}M$ 이었다. 암로디핀은 P-gp의 활성에는 영향을 미치지 않았다. 암로디핀 (0.4 mg/kg)은 레파그리니드의 혈장곡선하면적(AUC)과 최고혈장농도 ($C_{max}$)를 40.2% 와 22.2% 각각 유의성 (p < 0.05)있게 증가시켰다. 따라서, 레파그리니드의 상대적생체이용률 (RB)은 암로디핀과 병용투여 시 1.18-1.40 배 증가되었으며, 또한 레파그리니드의 절대적생체이용률(AB)은 대조군과 비교하여 41.0% 유의성 있게 증가되었다. 경구 투여 시와는 대조적으로, 암로디핀은 정맥 내로 투여된 레파그리니드에서는 약동학적 파라미터에 어떤 영향도 미치지 않았다. 따라서 암로디핀이 레파그리니드의 생체이용률을 증가시킨 것은 신장배설 감소 또는 P-gp 활성억제 보다는 암로디핀이 소장 또는 간장에서 CYP3A4을 억제시켰기 때문으로 사료된다. 암로디핀과 레파그리니드의 병용투여 시 레파그리니드의 용량을 조절하는 것이 안전하다고 사료된다.

Structure-Based Virtual Screening and Biological Evaluation of Non-Azole Antifungal Agent

  • Lee, Joo-Youn;Nam, Ky-Youb;Min, Yong-Ki;Park, Chan-Koo;Lee, Hyun-Gul;Kim, Bum-Tae;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.139-143
    • /
    • 2005
  • Cytochrome P450 14${\alpha}$-sterol demethylase enzyme (CYP51) is the target a of azole type antifungals. The azole blocks the ergosterol synthesis and thereby inhibits fungal growth. A three-dimensional (3D) homology model of CYP51 from Candida albicans was constructed based on the X-ray crystal structure of CYP51 from Mycobacterium tuberculosis. Using this model, the binding modes for the substrate (24-methylene-24, 25-dihydrolanosterol) and the known inhibitors (fluconazole, voriconazole, oxiconazole, miconazole) were predicted from docking. Virtual screening was performed employing Structure Based Focusing (SBF). In this procedure, the pharmacophore models for database search were generated from the protein-ligands interactions each other. The initial structure-based virtual screening selected 15 compounds from a commercial available 3D database of approximately 50,000 molecule library, Being evaluated by a cell-based assay, 5 compounds were further identified as the potent inhibitors of Candida albicans CYP51 (CACYP51) with low minimal inhibitory concentration (MIC) range. BMD-09-01${\sim}$BMD-09-04 MIC range was 0.5 ${\mu}$g/ml and BMD-09-05 was 1 ${\mu}$g/ml. These new inhibitors provide a basis for some non-azole antifungal rational design of new, and more efficacious antifungal agents.

  • PDF

Pharmacokinetic Drug Interaction between Carvedilol and Ticlopidine in Rats

  • Choi, Jun-Shik;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.343-349
    • /
    • 2010
  • This study was designed to investigate the effects of ticlopidine on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) or intravenously (1 mg/kg) without or with oral administration of ticlopidine (4, 12 mg/kg) to rats. The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 activity were also evaluated. Ticlopidine inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $25.2\;{\mu}M$. In addition, ticlopidine could not significantly enhance the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group (given carvedilol alone), the area under the plasma concentration-time curve (AUC) was significantly (12 mg/kg, p<0.05) increased by 14-41%, and the peak concentration ($C_{max}$) was significantly (12 mg/kg, p<0.05) increased by 10.7-73.3% in the presence of ticlopidine after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.14- to 1.41-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of ticlopidine was increased by 36.2-38.5%. Compared to the i.v. control, ticlopidine could not significantly change the pharmacokinetic parameters of i.v. administered carvedilol. The enhanced oral bioavailability of carvedilol may result from inhibition of CYP2C9-mediated metabolism rather than P-gpmediated efflux of carvedilol in the intestinal and/or in liver and renal eliminatin of carvedilol by ticlopidine.

Effects of Formononetin on the Aryl Hydrocarbon Receptor and 7,12-Dimethylbenz[a]anthracene-induced Cytochrome P450 1A1 in MCF-7 Human Breast Carcinoma Cells

  • Han, Eun-Hee;Jeong, Tae-Cheon;Jeong, Hye-Gwang
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2007
  • Formononetin is an isoflavonoid phytoestrogen found in certain foodstuffs such as soy and red clover. In this study, we examined the action of formononetin with the carcinogen activation pathway mediated through the aryl hydrocarbon receptor (AhR) in MCF-7 breast carcinoma cells. Treating the cells with formononetin alone caused the accumulation of CYP1A1 mRNA as well as elevation in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. However, a concomitant treatment with 7,12-dimethylbenz[a]anthracene (DMBA) and formononetin markedly reduced both the DMBA-inducible EROD activity and CYP1A1 mRNA level. Under the same conditions, formononetin inhibited the DMBA-induced AhR transactivation, as shown by reporter gene analysis using a xenobiotic responsive element (XRE). Additionally, formononetin inhibited both DMBA-inducible nuclear localization of the aryl hydrocarbon receptor (AhR) and metabolic activation of DMBA, as measured by the formation of the DMBA-DNA adducts. Furthermore, formononetin competed with the prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for binding to the AhR in an isolated rat cytosol. These results suggest that formononetin might be considered as a natural ligand to bind on AhR and consequently produces a potent protective effect against DMBA-induced genotoxicity. Therefore, that's the potential to act as a chemopreventive agent that is related to its effect on AhR pathway as antagonist/agonist.

Expression of CYP1A1 and GSTP1 in Human Brain Tumor Tissues in Pakistan

  • Wahid, Mussarat;Mahjabeen, Ishrat;Baig, Ruqia Mehmood;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7187-7191
    • /
    • 2013
  • Most of the exogenous and endogenous chemical compounds are metabolized by enzymes of xenobiotic processing pathways, including the phase I cytochrome p450 species. Carcinogens and their metabolites are generally detoxified by phase II enzymes like glutathione-S-transferases (GST). The balance of enzymes determines whether metabolic activation of pro-carcinogens or inactivation of carcinogens occurs. Under certain conditions, deregulated expression of xenobiotic enzymes may also convert endogenous substrates to metabolites that can facilitate DNA adduct formation and ultimately lead to cancer development. In this study, we aimed to test the association between deregulation of metabolizing genes and brain tumorigenesis. The expression profile of metabolizing genes CYP1A1 and GSTP1 was therefore studied in a cohort of 36 brain tumor patients and controls using Western blotting. In a second part of the study we analyzed protein expression of GSTs in the same study cohort by ELISA. CYP1A1 expression was found to be significantly high (p<0.001) in brain tumor as compared to the normal tissues, with ~4 fold (OR=4, 95%CI=0.43-37) increase in some cases. In contrast, the expression of GSTP1 was found to be significantly low in brain tumor tissues as compared to the controls (p<0.02). This down regulation was significantly higher (OR=0.05, 95%CI=0.006-0.51; p<0.007) in certain grades of lesions. Furthermore, GSTs levels were significantly down-regulated (p<0.014) in brain tumor patients compared to controls. Statistically significant decrease in GST levels was observed in the more advanced lesions (III-IV, p<0.005) as compared to the early tissue grades (I-II). Thus, altered expression of these xenobiotic metabolizing genes may be involved in brain tumor development in Pakistani population. Investigation of expression of these genes may provide information not only for the prediction of individual cancer risk but also for the prevention of cancer.

Clinical, Cytogenetic and CYP1A1 exon-1 Gene Mutation Analysis of Beedi Workers in Vellore Region, Tamil Nadu

  • Sundaramoorthy, Rajiv;Srinivasan, Vasanth;Gujar, Jidnyasa;Sen, Ayantika;Sekar, Nishu;Abilash, Valsala Gopalakrishnan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7555-7560
    • /
    • 2013
  • Background: Beedi rollers are exposed to unburnt tobacco dust through cutaneous and pharyngeal route and it is extremely harmful to the body since it is carcinogenic in nature and can cause cancer during long exposure. This indicates that occupational exposure to tobacco imposes considerable genotoxicity among beedi workers. Materials and Methods: In the present study, 27 beedi workers and age and sex matched controls were enrolled for clinical, cytogenetics and molecular analysis. Clinical features were recorded. The workers were in the age group of 28-67 years and were workers exposure from 8-60 years. Blood samples were collected from workers and control subjects and lymphocyte cultures were carried out by using standard technique, slides were prepared and 50 metaphases were scored for each sample to find the chromosomal abnormalities. For molecular analysis the genomic DNA was extracted from peripheral blood, to screen the variations in gene, the exon 1 of CYP1A1 gene was amplified by polymerase chain reaction (PCR) and then screened with Single Strand Conformation Polymorphism (SSCP) analysis. Results: A statistically significant increase was observed in the frequencies of chromosomal aberrations in exposed groups when compared to the respective controls and variations observed in Exon 1 of CYP1A1(Cytochrome P450, family 1, subfamily A, polypeptide 1) gene. Conclusions: This study shows that, the toxicants present in the beedi that enter into human body causes disturbance to normal state and behavior of the chromosomes which results in reshuffling of hereditary material causing chromosomal aberrations and genomic variations.