• 제목/요약/키워드: CYP3A4

검색결과 290건 처리시간 0.033초

Cytochrome P450 3A4에 의한 Aflatoxin $B_1$의 산화에 대한 Dehydronifedipine의 영향 (The Effect of Dehydronifedipine on the Oxidation of Aflatoxin $B_1$ by Cytochrome P450 3A4)

  • 김복량;권강범;김동현
    • Toxicological Research
    • /
    • 제15권1호
    • /
    • pp.95-101
    • /
    • 1999
  • Cytochrome P450 (CYP) 3A4 metabolizes aflatoxin B1 (AFB1) to AFB1-exo-8,9-epoxide (8,9-epoxidation) and aflatoxin Q1 (AFQ1; 3$\alpha$-hydroxylation) simultaneously. We investigated whether each metabolite was formed via its own binding site of CAP3A4 active site. Kinetics of the formation of the two metabolites were sigmoidal and consistent with the kinetics of substrate activation. The HIll model predicted that two substrate binding wites are involved in the oxidationof AFB1 by CYP3A4. Dehydronifedipine, a metabolite of nifedipine generated by CYP3A4, inhibited the formation of AFQ1 without any inhibition in the formation of AFB1-exo-8,9-epoxidation. Dehydronifedipine was found to act as a reversible competitive inhibitor against 3$\alpha$-hydroxylation of AFB1. Vmax and S0.5 of the 8,9-epoxidation were not changed in the presence of 0, 50, or 100 $\mu\textrm{M}$ dehydronifedipine. S0.5 of 3$\alpha$-hydroxylation was increased from 58$\pm$4 $\mu\textrm{M}$ to 111$\pm$8 $\mu\textrm{M}$ in the presence of 100 $\mu\textrm{M}$ nifedipine whereas Vmax was not changed. These results suggest that there exist two independent binding sites in the active site of CAP3A4 . One binding site is responsible for AFB1-exo-8,9-epoxidation and the other is involved in 3$\alpha$-hydroxylation of AFB1. Dehydronifedipine might selectively bind to the site which is responsible for the formation of AFQ1 in the active site of CYP3A4.

  • PDF

항산화제인 아피제닌이 에토포시드의 생체이용률 및 약동학에 미치는 영향 (Effects of Apigenin, an Antioxidant, on the Bioavailability and Pharmacokinetics of Etoposide)

  • 임태환;박선희;최준식
    • 한국임상약학회지
    • /
    • 제21권2호
    • /
    • pp.115-121
    • /
    • 2011
  • 에토포시드와 아피제닌의 약동학적 상호작용 연구를 위하여 아피제닌 (0.4, 2.0 또는 8 mg/kg)과 에토포시드의 경구(6 mg/kg) 및 정맥 (2 mg/kg) 투여 하여 본 연구를 실시하였다. 아피제닌이 cytochrome P450 (CYP) 3A4 활성과 P-glycoprotein (P-gp)의 활성에 미치는 영향도 평가하였다. 아피제닌의 CYP3A4의 50% 효소활성억제는 $1.8{\mu}M$ 이었다. 아피제닌은 MCF-7/ADR 세포의 로다마인-123 세포 축적을 증가 시키므로 P-gp를 억제시켰다. 아피제닌은 에토포시드의 혈장곡선하면적과 최고혈장농도 (AUC and $C_{max}$)를 유의성 있게 증가시켰으나, 에토포시드의 최고혈장농도 도달시간 ($T_{max}$)과 생물학적 반감기 ($t_{1/2}$)에는 영향을 미치지 않았다. 따라서, 아피제닌 존재하에 에토포시드의 절대적생체이용률 (AB)은 대조군과 비교하여 유의성있게 증가되었다. 경구투여시와는 대조적으로, 아피제닌은 정맥 내로 투여된 에토포시드에서는 약동학적 파라미터에 어떤 영향도 미치지 않았다. 따라서 아피제닌이 에토포시드의 생체이용률을 증가시킨 것은 아피제닌이 소장과 간장에서 CYP3A4을 억제 및 소장에서 P-gp를 억제 시켰기 때문으로 사료된다.

Homology Modeling and Molecular Docking Analysis of Streptomyces peucetius CYP125A4 as C26 Monooxygenase

  • Lee, Seung-Won;Lee, Na-Rae;Lee, Ji-Hun;Oh, Tae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1885-1889
    • /
    • 2012
  • Among 23 cytochrome P450s, CYP125A4 was proposed as a putative monooxygenase based on the high level of amino acid sequence homology (54% identity and 75% similarity) with the well characterized C27-steroid $Mycobacterium$ $tuberculosis$ CYP125A1. Utilizing MTBCYP125A1 as a template, homology modeling of SPCYP125A4 was conducted by Accelrys Discovery Studio 3.1 software. The modeled SPCYP125A4 structure with lowest energy value was subsequently assessed for its stereochemical quality and side-chain environment. The final model was generated by showing its active site through the molecular dynamics. The docking of steroids showed broad specificity of SPCYP125A4 with different orientation of ligand within active site facing the heme. One poses of C27-steroid with C26 facing the heme with distance of 3.734 ${\AA}$ from the Fe were predominant.

CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients

  • Yazdi, Mohammad Forat;Rafieian, Shiva;Gholi-Nataj, Mohsen;Sheikhha, Mohammad Hasan;Nazari, Tahereh;Neamatzadeh, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6783-6787
    • /
    • 2015
  • Background: Despite consistent pharmacogenetic effects of CYP2D6 on tamoxifen exposure, there is considerable controversy regarding the validity of CYP2D6 as a predictor of tamoxifen outcome. Understanding the current state of evidence in this area and its limitations is important for the care of patients who require endocrine therapy for breast cancer. Materials and Methods: A total of 101 patients with breast cancer who received tamoxifen therapy for at least 3 years, were genotyped for common alleles of the CYP2D6 gene by nested-PCR and restriction fragment length polymorphism PCR. Patients were classified as extensive or poor metabolizers (PM) based on CYP2D6*4 alleles in 3 different groups according to the menopause, Her2-neu status, and stage 3. Results: The mean age of the patients with the disease recurrence was $50.8{\pm}6.4$ and in non recurrent patients was $48.2{\pm}6.8$. In this study 63.3% (n=64) patients were extensive metabolizers and 36.6% (n=37) were poor metabolizers. Sixty four of the 101 patients (63.3%) were Her2-neu positive. For tamoxifen-treated patients, no statistically significant difference in rate of recurrence observed between CYP2D6 metabolic variants in stage 3 and post-menopausal patients. However, there was a significant association between CYP2D6 genotype and recurrence in tamoxifen-treated Her2-neu positive patients. Compared with other women with breast cancer, those with Her2-neu positive breast cancer and extensive metabolizer alleles had a decreased likelihood of recurrence. Conclusions: This study for the first time demonstrated significant effects of CYP2D6 extensive metabolizer alleles on risk of recurrence in Her2-neu positive breast cancer patients receiving adjuvant tamoxifen therapy. Therefore, CYP2D6 metabolism, as measured by genetic variation, can be a predictor of breast cancer outcome in Her2-neu positive women receiving tamoxifen.

아톨바스타틴과 니페디핀의 약물동태학적 상호작용 (Pharmacokinetic Interaction Between Atorvastatin and Nifedipine)

  • 문홍섭;최준식
    • 한국임상약학회지
    • /
    • 제20권1호
    • /
    • pp.25-29
    • /
    • 2010
  • The purpose of this study was to investigate the effect of atorvastatin on the pharmacokinetics of nifedipine (6 mg/kg) after oral administration of nifedipine with or without atorvastatin (0.5 and 2.0 mg/kg) in rats, and also was to evaluate to the effect of atorvastatin on the CYP3A4 activity. The 50% inhibiting concentration ($IC_{50}$) values of atorvastatin on CYP3A4 activity is 46.1 ${\mu}M$. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner. Coadministration of atorvastatin increased significantly (p<0.05, 2.0 mg/kg) the plasma concentration-time curve (AUC) and the peak concentration ($C_{max}$) of nifedipine compared to the control group. The relative bioavailability (RB%) of nifedipine was increased from 1.15- to 1.37-fold. Coadministration of atorvastatin did not significantly change the terminal half-life ($T_{1/2}$) and the time to reach the peak concentration ($T_{max}$) of nifedipine. Based on these results, we can make a conclusion that the significant changes of these pharmacokinetic parameters might be due to atorvastatin, which possesses the potency to inhibit the metabolizing enzyme (CYP3A4) in the liver and intestinal mucosa, and also inhibit the P-glycoprotein (P-gp) efflux pump in the intestinal mucosa. It might be suggested that atorvastatin altered disposition of nifedipine by inhibition of both the first-pass metabolism and P-glycoprotein efflux pump in the small intestine of rats. In conclusion, the presence of atorvastatin significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of atorvastatin with nifedipine should require close monitoring for potential drug interation.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

Daidzein이 benzo(k)fluoranthene에 의한 사람 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향 (Effects of Daidzein on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells)

  • 양소연;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권4호
    • /
    • pp.180-188
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. when cells were treated with daidzein inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But daidzein exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate flavonoids might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression.

  • PDF

Effects of Mollugin on Hepatic Cytochrome P450 in Male ICR Mice as Determined by Liquid Chromatography/Tandem Mass Spectrometry

  • Song, Min;Hong, Miri;Choi, Hyun Gyu;Jahng, Yurngdong;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제3권4호
    • /
    • pp.104-107
    • /
    • 2012
  • Mollugin isolated from Rubia cordifolia is known to have anti-inflammatory, anti-cancer, and anti-viral activities. In the present study, a cocktail probe assay and LC-MS/MS were used to investigate the modulating effect of mollugin on cytochrome P450 (CYP) enzymes in male ICR mice. After mollugin was orally administrated to mice at the 20, 40, or 80 mg/kg for 3 days, the activities of CYP in hepatic S-9 fractions were investigated. Unlike the selective inhibitory effect of mollugin on CYP1A2-catalyzed phenacetin O-deethylation in vitro, mollugin only significantly inhibited the activity of CYP2E1-catalyzed chlorzoxazone 6-hydroxylase in vivo. The activities of other CYPs were only slightly altered by mollugin. The results of this study suggest that mollugin might cause herb-drug interactions via the selective inhibition of CYP2E1 in vivo.

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Kim, Sunjoo;Kim, Ju-Hyun;Kim, Dong Kyun;Lee, Jaesin;In, Sangwhan;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.86-90
    • /
    • 2018
  • Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and toxicity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatography-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline.

Association of gastric cancer with cytochrome P450 2C19 single-nucleotide polymorphisms in Koreans

  • Kim, Hyun-Ju;Park, Hye-Jung;Lee, Sang-Gyu;Lee, Hye-Suk;Park, Won-Cheol;Kim, Jeong-Joong;Oh, Gyung-Jae;Kim, Yun-Kyung
    • Advances in Traditional Medicine
    • /
    • 제7권4호
    • /
    • pp.357-362
    • /
    • 2007
  • Cytochrome P450 2C19 (CYP2C19) is a clinically important enzyme involved in the metabolism of therapeutic drugs, including (S)-mephenytoin, omeprazole, proguanil, and diazepam. Individuals are characterized as either extensive metabolizers (EM) or poor metabolizers (PM) on the basis of CYP2C19 enzyme activity. The PM phenotype occurs in 2-5% of Caucasians, but in 18-23% of Asians. To clarify the association between CYP2C19 polymorphisms and gastric cancer in Koreans, we investigated CYP2C19 genotypes ($CYP2C19^*1,\;{^*2},\;and\;^*3$) in 109 patients with gastric cancer and 211 controls. Normal ($CYP2C19^*1$) and defective alleles were detected with polymerase chain reaction/restriction enzyme analysis. CYP2C19 has three hereditary genotypes: homozygous EM, with high enzymatic activity; heterozygous EM, with moderate enzymatic activity; and PM, with no enzyme activity. We found that CYP2C19 heterozygous EM is more closely associated with gastric cancer than is homozygous EM. Because the CYP2C19 genotype varies in Koreans, a genotyping test is desirable to prevent gastropathy recurrence in patients before their doses of omeprazole are reduced during maintenance therapy.