Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.15.6783

CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients  

Yazdi, Mohammad Forat (Department of Internal Medicine, Shahid Sadoughi Training Hospital)
Rafieian, Shiva (Department of Internal Medicine, Shahid Sadoughi Training Hospital)
Gholi-Nataj, Mohsen (Department of Internal Medicine, Shahid Sadoughi Training Hospital)
Sheikhha, Mohammad Hasan (Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences and Health Services)
Nazari, Tahereh (Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences and Health Services)
Neamatzadeh, Hossein (Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences and Health Services)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.15, 2015 , pp. 6783-6787 More about this Journal
Abstract
Background: Despite consistent pharmacogenetic effects of CYP2D6 on tamoxifen exposure, there is considerable controversy regarding the validity of CYP2D6 as a predictor of tamoxifen outcome. Understanding the current state of evidence in this area and its limitations is important for the care of patients who require endocrine therapy for breast cancer. Materials and Methods: A total of 101 patients with breast cancer who received tamoxifen therapy for at least 3 years, were genotyped for common alleles of the CYP2D6 gene by nested-PCR and restriction fragment length polymorphism PCR. Patients were classified as extensive or poor metabolizers (PM) based on CYP2D6*4 alleles in 3 different groups according to the menopause, Her2-neu status, and stage 3. Results: The mean age of the patients with the disease recurrence was $50.8{\pm}6.4$ and in non recurrent patients was $48.2{\pm}6.8$. In this study 63.3% (n=64) patients were extensive metabolizers and 36.6% (n=37) were poor metabolizers. Sixty four of the 101 patients (63.3%) were Her2-neu positive. For tamoxifen-treated patients, no statistically significant difference in rate of recurrence observed between CYP2D6 metabolic variants in stage 3 and post-menopausal patients. However, there was a significant association between CYP2D6 genotype and recurrence in tamoxifen-treated Her2-neu positive patients. Compared with other women with breast cancer, those with Her2-neu positive breast cancer and extensive metabolizer alleles had a decreased likelihood of recurrence. Conclusions: This study for the first time demonstrated significant effects of CYP2D6 extensive metabolizer alleles on risk of recurrence in Her2-neu positive breast cancer patients receiving adjuvant tamoxifen therapy. Therefore, CYP2D6 metabolism, as measured by genetic variation, can be a predictor of breast cancer outcome in Her2-neu positive women receiving tamoxifen.
Keywords
Breast cancer; tamoxifen; recurrent; menopause; CYP2D6;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Abraham JE, Maranian MJ, Driver KE, et al (2010). CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res, 12, 64.
2 Bijl MJ, van Schaik RH, Lammers LA, et al (2009). The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat, 118, 125-30.   DOI
3 Brauch H, Schroth W, Eichelbaum M, et al (2008). Clinical relevance of CYP2D6 genetics for tamoxifen response in breast cancer. Breast Care, 3, 43-50.   DOI
4 Darakhshan S, Bidmeshkipour A, Khazaei M, et al (2013). Synergistic effects of tamoxifen and tranilast on VEGF and MMP 9 regulation in cultured human breastcancer cells. Asian Pac J Cancer Prev, 14, 6869-74.   DOI   ScienceOn
5 Dowsett M, Procter M, McCaskill-Stevens W, et al (2009). Disease-free survival according to degree of HER2 amplification for patients treated with adjuvant chemotherapy with or without 1 year of trastuzumab: the HERA Trial. J Clin Oncol, 27, 2962-9.   DOI   ScienceOn
6 Hassan BA, Yusoff ZB (2011). Genetic polymorphisms in the three Malaysian races effect granisetron clinical antiemetic actions in breast cancer patients receiving chemotherapy. Asian Pac J Cancer Prev, 12, 185-91.
7 Hayes DF, Stearns V, Rae J, Flockhart D (2008). A model citizen? Is tamoxifen more effective than aromatase inhibitors if we pick the right patients? J Natl Cancer Inst, 100, 610-3.   DOI
8 Goetz MP, Rae JM, Suman VJ, et al (2005). Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol, 23, 9312-8.   DOI
9 Goetz MP, Kamal A, Ames MM (2008). Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther. 83, 160-6.   DOI
10 Gonzalez-Santiago S, Zarate R, Haba-Rodriguez J, et al (2007). CYP2D6*4 polymorphism as blood predictive biomarker of breast cancer relapse in patients receiving adjuvant tamoxifen. J Clin Oncol, 18, 590.
11 Forat-Yazdi M, Neamatzadeh H, Sheikhha MH, Zare-Shehneh M, Fattahi M (2015). BRCA1 and BRCA2 common mutations in iranian breast cancer patients: a meta analysis. Asian Pac J Cancer Prev, 16, 1219-24.   DOI
12 Jin TB, Ma LF, Zhang JY, et al (2013). Polymorphisms and phenotypic analysis of cytochrome P450 2D6 in the Tibetan population. Gene, 527, 360-5.   DOI
13 Kirchheiner J, Schmidt H, Tzvetkov M, et al (2007). Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J, 7, 257-65.   DOI
14 Lash TL, Cronin-Fenton D, Ahern TP, et al (2011). CYP2D6 inhibition and breast cancer recurrence in a population-based study in Denmark. J Natl Cancer Inst, 103, 489-500.   DOI
15 Martinez de Duenas E, Ochoa Aranda E, Blancas Lopez-Barajas I, et al (2014). Adjusting the dose of tamoxifen in patients with early breast cancer and CYP2D6 poor metabolizer phenotype. Breast, 23, 400-6.   DOI
16 Motamedi S, Majidzadeh K, Mazaheri M, et al (2012). Tamoxifen resistance and CYP2D6 copy numbers in breast cancer patients. Asian Pac J Cancer Prev, 13, 6101-4.   DOI
17 Morrow PK, Serna R, Broglio K, et al (2012). Effect of CYP2D6 polymorphisms on breast cancer recurrence. Cancer, 118, 1221-7.   DOI
18 Martins DM, Vidal FC, Souza RD, et al (2014). Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in Sao Luis, Brazil, and itsassociation with prognostic factors and disease-free survival. Braz J Med Biol Res, 47, 1008-15.   DOI
19 Meiyanto E, Hermawan A, Anindyajati (2012). Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev, 13, 427-36.   DOI   ScienceOn
20 Nelson R (2012). CYP2D6 has impact on effectiveness of tamoxifen. medscape medical news. Available at: http://www.medscape.com/viewarticle/776933
21 Nowell SA, Ahn J, Rae JM, et al (2005). Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat, 91, 249-58.   DOI
22 Okishiro M, Taguchi T, Jin Kim S, et al (2009). Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer, 115, 952-61.   DOI
23 Park IH, Ro J, Park S, et al (2013). Lack of any association between functionally significant CYP2D6 polymorphisms and clinical outcomes in early breast cancer patients receiving adjuvant tamoxifen treatment. Breast Cancer Res Treat, 131, 455-61.
24 Shiryazdi SM, Kargar S, Taheri-Nasaj H, Neamatzadeh H (2015). BreastLight apparatus performance in detection of breast masses depends on mass size. Asian Pac J Cancer Prev, 16, 1181-4.   DOI
25 Serin A, Canan H, Alper B, Gulmen M (2012). The frequencies of mutated alleles of CYP2D6 gene in a Turkish population. Forensic Sci Int, 222, 332-4.   DOI
26 Schorth W, Antoniadou L, Fritz P, et al (2007). Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol, 25, 5187-93.   DOI
27 Schroth W, Goetz MP, Hamann U, et al (2009). Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA, 302, 1429-36.   DOI
28 Sukasem C, Sirachainan E, Chamnanphon M, et al (2012). Impact of CYP2D6 polymorphisms on tamoxifen responses of women with breast cancer: a microarray-basedstudy in Thailand. Asian Pac J Cancer Prev, 13, 4549-53.   DOI
29 Wegman P, Elingarami S, Carstensen J, et al (2007). Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res, 9, 7.
30 Wegman P, Vainikka L, Stal O, et al (2005) Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res, 7, 284-290.   DOI
31 Zhou LP, Luan H, Dong XH, et al (2012). Genetic variants of CYP2D6 gene and cancer risk: a HuGE systematic review and meta-analysis. Asian Pac J Cancer Prev, 13, 3165-72.   DOI   ScienceOn