• 제목/요약/키워드: CYP17

검색결과 92건 처리시간 0.025초

Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

  • Lee, Chong-Ki;Choi, Jun-Shik;Bang, Joon Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.245-251
    • /
    • 2013
  • The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration($IC_{50}$) of 4.1 ${\mu}M$ and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the $AUC_{0-{\infty}}$ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

Changes in the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, When Co-Administered with Amlodipine in Rats

  • Kim, Seon-Hwa;Kim, Kyu-Bong;Um, So-Young;Oh, Yun-Nim;Chung, Myeon-Woo;Oh, Hye-Young;Choi, Ki-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.299-304
    • /
    • 2009
  • Rosiglitazone maleate (RGM) is widely used for improving insulin resistance. RGM is a moderate inhibitor of cytochrome P450 2C8 (CYP2C8) and is also mainly metabolized by CYP2C8. The aim of this study was to determine whether the effect of RGM on CYP2C8 is altered by co-treatment with other drugs, and whether amlodipine camsylate (AC) changes the pharmacokinetics (PK) of RGM. Of the 11 drugs that are likely to be co-administered with RGM in diabetic patients, seven drugs lowered the $IC_{50}$ value of RGM on CYP2C8 by more than 80%. In vitro CYP2C8 inhibitory assays of RGM in combination with drugs of interest showed that the $IC_{50}$ of RGM was decreased by 98.9% by AC. In a pharmacokinetic study, Sprague-Dawley (SD) rats were orally administered 1 mg/kg of RGM following by single or 10-consecutive daily administrations of 1.5 mg/kg/day of AC. No significant changes in the pharmacokinetic parameters of RGM were observed after a single administration of AC, but the AUC and $C_{max}$ values of RGM were significantly reduced by 36% and 31%, respectively, by multiple administrations of AC. In conclusion, RGM was found to be affected by AC by in vitro CYP2C8 inhibition testing, and multiple dosing of AC appreciably changed the pharmacokinetics of RGM. These findings suggest that a drug interaction exists between AC and RGM.

체외배양 생쥐정소세포에서 합성에스트로겐이 P450 등위효소의 발현에 미치는 영향 (Effects of Xenoestrogens on Gene Expression of Cytochrome P450 Genes in in vitro Cultured Mice Spermatogenic Cells)

  • 이호준;김묘경;고덕성;김길수;강희규;김동훈
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권2호
    • /
    • pp.131-140
    • /
    • 2001
  • Objective: To know the effects of xenoestrogen on spermatogenesis, we investigated the expression of cytochrome P450s enzymes (CYPscc, $CYP_{17{\alpha}}$, CYP19) and $3{\beta}$-HSD genes involved in steroidogenesis. Methods: Mouse testicular cells were prepared from 15-day-old ICR mice which had only pre-meiotic germ cells by enzyme digestion using collagenase and trypsin. Testicular cells were cultured in DMEM supplemented with FSH (0.1 IU/ml) and 10% FBS or medium with estrogen ($E_2$), bisphenol-A (BPA), octylphenol (OP; $10^{-9},\;10^{-7},\;10^{-6},\;10^{-5},\;10^{-4}M$, respectively) and aroclor 1254 (A1254) known as PCBs for 48 hours. The gene expression of cytochrome P450 enzymes were examined by semi-quantitive RT-PCR. The production of estrogen and testosterone was examined by RIA. Results: As results, expression of CYPscc mRNA was not significantly decreased, but $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA were significantly dose-dependent decreased. And production of testosterone and estrogen were not different except BPA and OP group ($10^{-5}M$). Conclusion: BPA, OP and A1254 might inhibit steroidogenesis by decreasing CYPscc, $3{\beta}$-HSD and $CYP_{17{\alpha}}$. mRNA expression in the mouse testis. These results suggest that BPA, OP and PCBs like as an endocrine disruptors inhibit the productions of steroidogenic enzymes and decrease the production of T and E by negative feedback mechanism. Therefore, these might disrupt steroidogenesis in Leydig cells of testis and would disturb testicular function and subsequently impair spermatogenesis.

  • PDF

두경부 편평세포암종에서 CYP1A1, GSTM1, GSTT1, GSTP1 유전자 다형성 및 p53 과발현 (The Relationship between the Polymorphism of CYP1A1, GSTM1, GSTT1, GSTP1 and p53 Overexpression in Head and Neck Squamous Cell Carcinoma)

  • 태경;박혜경;이승환;김경래;이형석
    • 대한두경부종양학회지
    • /
    • 제19권2호
    • /
    • pp.148-157
    • /
    • 2003
  • Background and Objectives: Individual genetic susceptibilities to chemical carcinogens have been recognized as a major important host factors in human cancers. The cytochrome P450 family (CYPs) and glutathione S-transferase(GST) have been reported to be associated with risks to the smoking-related human cancers. Inactivation of tumor suppressor genes like p53 playa key role in tumor progression. The purpose of this study is to demonstrate an association between p53 overexpression and the prevalence of the genetic polymorphisms of CYP1A1 and GSTs in Korean head and neck squamous cell carcinoma (HNSCC). Materials and Methods: The polymorphisms of CYPIA1 and GSTs were analyzed by PCR and PCR-RFLP in 98 Korean head and neck squamous cell carcinoma patients. The expression of p53 was analyzed by immunohistochemistry with anti-p53 Ab (DO7). Results: Overexpression of p53 detected in 45.9% of HNSCC. The odds ratio for p53 overexpression in GSTM1(-), GSTT1(-), GSTP1(val/val) and CYP1A1(val/val) were 1.53, 1.83, 1.17 and 1.47, respectively. Among the combined genotypes, the odds ratio of the CYP1A1 val/val, GSTM1 (-), CYP1A1 val/val, GSTT1(-), and CYP1A1 val/val, GSTT1(-) were 2.0, 2.34 and 4.68, respectively. Conclusion: Based on our results, it might be suggested that p53 overexpression is slightly increased in GSTM1(-), GSTT1(-), GSTP1 val/val, CYP1A1 val/val genotypes. The further study is needed to evaluate the relationship and mechanism between the p53 overexpression and the specific CYP1A1 and GSTs genotypes.

Validation of Gene Silencing Using RNA Interference in Buffalo Granulosa Cells

  • Monga, Rachna;Datta, Tirtha Kumar;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1529-1540
    • /
    • 2011
  • Silencing of a specific gene using RNAi (RNA interference) is a valuable tool for functional analysis of a target gene. However, information on RNAi for analysis of gene function in farm animals is relatively nil. In the present study, we have validated the interfering effects of siRNA (small interfering RNA) using both quantitative and qualitative gene silencing in buffalo granulosa cells. Qualitative gene knockdown was validated using a fluorescent vector, enhanced green fluorescence protein (EGFP) and fluorescently labeled siRNA (Cy3) duplex. While quantitatively, siRNA targeted against the luciferase and CYP19 mRNA was used to validate the technique. CYP19 gene, a candidate fertility gene, was selected as a model to demonstrate the technique optimization. However, to sustain the expression of CYP19 gene in culture conditions using serum is difficult because granulosa cells have the tendency to luteinize in presence of serum. Therefore, serum free culture conditions were optimized for transfection and were found to be more suitable for the maintenance of CYP19 gene transcripts in comparison to culture conditions with serum. Decline in fluorescence intensity of green fluorescent protein (EGFP) was observed following co-transfection with plasmid generating siRNA targeted against EGFP gene. Quantitative decrease in luminescence was seen when co-transfected with siRNA against the luciferase gene. A significant suppressive effect on the mRNA levels of CYP19 gene at 100 nM siRNA concentration was observed. Also, measurement of estradiol levels using ELISA (enzyme-linked immunosorbent assay) showed a significant decline in comparison to control. In conclusion, the present study validated gene silencing using RNAi in cultured buffalo granulosa cells which can be used as an effective tool for functional analysis of target genes.

Hydroxylation of Compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis

  • Yao, Qiuping;Ma, Li;Liu, Ling;Ikeda, Haruo;Fushinobu, Shinya;Li, Shengying;Xu, Lian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.956-964
    • /
    • 2017
  • Compactin and pravastatin are competitive cholesterol biosynthesis inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase and belong to the statin drugs; however, the latter shows superior pharmacokinetic characteristics. Previously, we reported that the bacterial P450, CYP105D7, from Streptomyces avermitilis can catalyze the hydroxylation of 1-deoxypentalenic acid, diclofenac, and naringenin. Here, we demonstrate that CYP105D7 could also catalyze compactin hydroxylation in vitro. In the presence of both bacterial and cyanobacterial redox partner systems with an NADPH regeneration system, the reaction produced two hydroxylated products, including pravastatin (hydroxylated at the C6 position). The steady-state kinetic parameters were measured using the redox partners of putidaredoxin and its reductase. The $k_m$ and $k_{cat}$ values for compactin were $39.1{\pm}8.8{\mu}M$ and $1.12{\pm}0.09min^{-1}$, respectively. The $k_{cat}/K_m$ value for compactin ($0.029min^{-1}{\cdot}{\mu}M^{-1}$) was lower than that for diclofenac ($0.114min^{-1}{\cdot}{\mu}M^{-1}$). Spectroscopic analysis showed that CYP105D7 binds to compactin with a $K_d$ value of $17.5{\pm}3.6{\mu}M$. Molecular docking analysis was performed to build a possible binding model of compactin. Comparisons of different substrates with CYP105D7 were conclusively illustrated for the first time.

No Association of Cytochrome P450-1B1 Gene Polymorphisms with Risk of Breast Cancer: an Egyptian Study

  • Ibrahim, Mona H;Rashed, Reham A;Hassan, Naglaa M;Al-azhary, Nevin M;Salama, Asmaa I;Mostafa, Marwa N
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권6호
    • /
    • pp.2861-2866
    • /
    • 2016
  • It is thought that population characteristics of breast cancer may be due to a variation in the frequency of different alleles of genes such as CYP1B1. We aimed to determine the association of CYP1B1 polymorphisms in 200 breast cancer cases and 40 controls by PCR-RFLP. Frequencies were assessed with clinical and risk factors in Egyptian patients. The genotype LV and the Leu allele frequencies for patients and controls were 42.9% and 50%, and 52.9% and 53.3%, respectively), with no significant differences observed (P values = 0.8 and 0.6, respectively). There was also no significant association between genotypes and any risk factors for cases (P>0.05) except laterality and metastasis of the tumor (P values=0.006 and 0.06, respectively). The CYP1B1 polymorphism Val432Leu was not associated with breast cancer in Egypt, but may provide clues for future studies into early detection of the disease.

Rubus coreanus Extract Attenuates Acetaminophen Induced Hepatotoxicity; Involvement of Cytochrome P450 3A4

  • Lee, Young-Ik;Whang, Kyung-Eun;Cho, Jin-Sook;Ahn, Byung-Min;Lee, Sang-Bum;Dong, Mi-Sook;Kim, Tae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.455-460
    • /
    • 2009
  • Foods of plant origin, especially fruits and vegetables, have attracted attention because of their potential benefits to human health. In this report, Rubi Fructus (RF), the dried unripe fruit of Rubus coreanus Miq (Rosaceae) and ellagic acid (EA) purified from RF were used to test their potential hepatoprotective effect against acetaminophen (AAP)-induced hepatotoxicity in rats. RF extract (RFext) and EA reduced the elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) in serum and the content of lipid peroxide in liver by AAP administration, while the increment of the cellular glutathione (GSH) content and the induction of glutathione S-transferase (GST) and glutathione peroxidase (GSH-PX) which were decreased by AAP administration. RFext and EA from RFext did not affect the two major form of cytochrome P450s, cytochrome P450 2E1 (CYP2E1) and cytochrome P450 1A2 (CYP1A2), but downregulated the cytochrome P450 3A4 (CYP3A4) related to the conversion of AAP to N-acetyl-P-benzoquinone imine (NAPQI). These results suggest that RFext and EA from RF exhibit a hepatoprotective effect not only by increasing antioxidant activities but also by down-regulating CYP3A4 in the AAP-intoxicated rat.

A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland in Female Mice

  • Lee, Bo Young;Jo, Jeong Bin;Choi, Donchan;Lee, Sung-Ho;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.257-268
    • /
    • 2021
  • Phthalates and their metabolites are well-known endocrine disrupting chemicals. Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in industry and the exposing possibility to adult is high. In this study, DEHP was treated (133 ㎍/L and 1,330 ㎍/L in drinking water) according to the OECD test guideline 443 to mature female mice and their adrenal gland were examined for histological characteristics and steroidogenic gene expression. The wet weight of the adrenal gland was increased in all administrated groups compared to control. The diameter of zona fasciculata (ZF) was increased by DEHP in both outer ZF and inner ZF but there was no difference in morphology of the cells and arrangements into zona between groups. In addition, the arrangement of extracellular matrix was not different between control and DEHP groups. CYP11B1 was mainly localized at ZF and the intensity was not different between groups. DAX1 was localized in zona glomerulosa (ZG) and ZF, and its expression levels were decreased by DEHP administration. Its level was lower in DEHP133 group than DEHP1330 group. On the other hand, CYP17A1 was localized in ZG of DEHP1330 group. These results suggest that chronic low-dose DEHP exposing may modify the microstructure and function of the adrenal cortical cortex.

Therapeutic Effects and Adverse Drug Reactions are Affected by Icotinib Exposure and CYP2C19 and EGFR Genotypes in Chinese Non-Small Cell Lung Cancer Patients

  • Chen, Jia;Zheng, Xin;Liu, Dong-Yang;Zhao, Qian;Wu, Yi-Wen;Tan, Fen-Lai;Wang, Yin-Xiang;Jiang, Ji;Hu, Pei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7195-7200
    • /
    • 2014
  • Background: The aim of this study was to evaluate how CYP2C19 affects icotinib and metabolite' exposure, and to determine whether the exposure and EGFR genotype influences survival time, tumor metastasis and adverse drug reactions. Materials and Methods: 274 NSCLC patients who accepted 125mg icotinib/t.i.d. were chosen from a phase III study. Blood samples were obtained in $672^{nd}$ ($4^{th}$ week) and $1,680^{th}$ hours ($10^{th}$ week), and plasma was used to quantify the concentration of icotinib and blood cells were sampled to check the genotypes. Clinical data were also collected at the same time, including EGFR genotypes. Plasma concentrations were assessed by HPLC-MS/MS and genotype by sequencing. All data were analyzed through SPSS 17.0 and SAS 9.2. Results: CYP 2C19 genotypes affected bio-transformation from icotinib to M24 and M26, especially in poor-metabolisers. Higher icotinib concentrations (>1000 ng/mL) not only increased patient PFS and OS but also reduced tumor metastasis. Patients with mutant EGFR experienced a higher median PFS and OS (234 and 627 days), especially those with the 19del genotype demonstrating higher PR ratio. Patients who suffered grade II skin toxicity had a higher icotinib exposure than those with grade I skin toxicity or no adverse effects. Liver toxic reactions might occur in patients with greater M20 and M23 plasma concentrations. Conclusions: CYP2C19 polymorphisms significantly affect icotinib, M24 and M26 exposure. Patients with mutant EGFR genotype and higher icotinib concentration might have increased PFS and OS and lower tumor metastasis. Liver ADR events and serious skin effects might be respectively induced by greater M20, M23 and icotinib concentrations.