• Title/Summary/Keyword: CYP11A1

Search Result 68, Processing Time 0.027 seconds

Changes in the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, When Co-Administered with Amlodipine in Rats

  • Kim, Seon-Hwa;Kim, Kyu-Bong;Um, So-Young;Oh, Yun-Nim;Chung, Myeon-Woo;Oh, Hye-Young;Choi, Ki-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2009
  • Rosiglitazone maleate (RGM) is widely used for improving insulin resistance. RGM is a moderate inhibitor of cytochrome P450 2C8 (CYP2C8) and is also mainly metabolized by CYP2C8. The aim of this study was to determine whether the effect of RGM on CYP2C8 is altered by co-treatment with other drugs, and whether amlodipine camsylate (AC) changes the pharmacokinetics (PK) of RGM. Of the 11 drugs that are likely to be co-administered with RGM in diabetic patients, seven drugs lowered the $IC_{50}$ value of RGM on CYP2C8 by more than 80%. In vitro CYP2C8 inhibitory assays of RGM in combination with drugs of interest showed that the $IC_{50}$ of RGM was decreased by 98.9% by AC. In a pharmacokinetic study, Sprague-Dawley (SD) rats were orally administered 1 mg/kg of RGM following by single or 10-consecutive daily administrations of 1.5 mg/kg/day of AC. No significant changes in the pharmacokinetic parameters of RGM were observed after a single administration of AC, but the AUC and $C_{max}$ values of RGM were significantly reduced by 36% and 31%, respectively, by multiple administrations of AC. In conclusion, RGM was found to be affected by AC by in vitro CYP2C8 inhibition testing, and multiple dosing of AC appreciably changed the pharmacokinetics of RGM. These findings suggest that a drug interaction exists between AC and RGM.

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

The Anticancer Effects and Drug Metabolic Enzyme Change by Oral Intake of Agrimonia Pilosa Ledeb (선학초(짚신나물) 경구투여시 항암효과 탐색 및 약물 대사효소의 변화)

  • Rhee, Si-Hyung;Jung, Hee;Lee, Ju-Ah;Go, Ho-Yeon;Choi, Yu-Kyung;Park, Jong-Hyung;Kim, Ji-Hye;Ko, Seong-Kyu;Jun, Chan-Yong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.13 no.2
    • /
    • pp.51-64
    • /
    • 2009
  • Objective : This research was aimed to investigate the anti-tumor effect, safety, mechanism and metabolizing enzyme of Agrimonia pilosa LEDEB(APL) in female C57B/L mouse. Methods : At first, to evaluate the anti-tumor activity of APL, we divided into four groups, normal, control, APL100(100mg/kg), APL150(150mg/kg). LLC obtained American Type Culture Collection was used. LLC had been inoculated to induce tumor. To measure the anti-tumor effect of APL, we calibrate tumor size and weight. To study for mechanism of anti-tumor in APL, we used western blotting and to know metabolizing enzyme in APL we used to real-time PCR. Results : APL100, APL150 inhibited tumor growth after medicine injected. APL did not only induced caspase-dependent apoptosis in LLC-bearing mouse tumor. In APL100, it were decreased 72% in CYP3A11. In APL150, it were decreased 62%, 75% in CYP3A11 and MRP1a respectively. Conclusion : These results suggests that APL has some anti-tumor effects in female C57B/L mouse tumor. APL should be careful use with other drugs related with CYP3A11 or MRP1a.

  • PDF

High Efficacy of Levofloxacin-Dexlansoprazole-Based Quadruple Therapy as a First Line Treatment for Helicobacter pylori Eradication in Thailand

  • Prapitpaiboon, Hatainuch;Mahachai, Varocha;Vilaichone, Ratha-Korn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4353-4356
    • /
    • 2015
  • Background: Levofloxacin is an effective medication for second line Helicobacter pylori (H. pylori) eradication. However, limited studies have approved its use as an effective antibiotic in first line therapy. Dexlansoprazole is a new PPI and lacks of evidence in support of a role in H. pylori eradication. This study was designed to evaluate efficacy of levofloxacin-dexlansoprazole-based quadruple therapy for H. pylori eradication in Thailand. Materials and Methods: This prospective randomized control study was performed during June 2014 to December 2014. H. pylori infected gastritis patients were randomized to receive 7- or 14-day levofloxacin-dexlansoprazole based on quadruple therapy (levofloxacin 500 mg OD, dexlansoprazole 60 mg bid, clarithromycin MR 1000 mg OD, bismuth subsalicylate 1048 mg bid). CYP2C19 genotyping and antibiotic susceptibility tests were conducted for all patients. A 13C urea breath test was performed to confirm H. pylori eradication at least 4 weeks after treatment. Results: A total of 100 patients were enrolled, comprising 44 males and 56 females (mean age of 52.6 years). Eradication rate by PP analysis was 85.7% (42/49) with the 7-day regimen and 98% (48/49) with the 14-day regimen (85.7% vs 98%; p-value=0.059). ITT analysis was 84% and 96% with 7- and 14-day regimens, respectively (84% vs 96%; p-value=0.092). Antibiotic susceptibility testing demonstrated 35.1% resistance to metronidazole, 18.3% to clarithromycin, and 13.5% to levofloxacin. CYP2C19 genotyping revealed 54.1% RM, 34.7% IM and 11.2% PM. The 14-day regimen provided 100% eradication in patients with clarithromycin or dual clarithromycin and metronidazole H. pylori resistant strains. Moreover, the eradication rate was 96.6% in patients with CYP2C19 genotype RM. Conclusions: The 14-day levofloxacin-dexlansoprazole based quadruple therapy provides high H. pylori eradication regardless of CYP2C19 genotype, clarithromycin or dual clarithromycin and metronidazole resistant strains. This regimen could be use as an alternative first line therapy for H. pylori eradication in Thailand.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Upregulation of Renin-angiotensin, Endothelin and C-type Natriuretic Peptide in Rat Glomerulus with Bilateral Ureteral Obstruction

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.343-347
    • /
    • 2006
  • The present study was designed to investigate the effects renin-angiotensin-aldosterone system (RAAS), endothelin (ET) and local natriuretic peptide (NP) system for glomerulopathy induced in the experimental bilateral ureteral obstructive rats. Sprague-Dawley male rats ($200{\sim}220g$ body weight) were bilaterally obstructed by ligation of the proximal ureters for 24 hours. Control rats were treated in the same ways, except that no ligature was made. The glomeruli were isolated from cortex by graded sieve methods, and the mRNA expressions of local renin-angiotensin system (RAS), aldosterone synthase (CYP11B2), endothelin-1 (ET-1) and NP system were determined by real-time polymerase chain reaction. Following the bilateral ureteral obstruction, the mRNA expressions of renin, angiotensin converting enzyme 1 as well as ET-1 were increased, while that of angiotensin converting enzyme 2 was not changed. The expressions of CYP11B2 and angiotensin II receptors were not changed. C-type natriuretic peptide (CNP) expression was increased, while its receptors (natriuretic peptide receptor-B) were not changed. We suggest that the upregulation of local RAS and ET playa role in the progressive glomerular injury, and that the enhanced CNP activity also plays a compensatory role in obstructive uropathy in the glomerulus.

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.

Metabolic Activation of Marijuana Constituents, Cannabinoids, in Relation to Their Toxicity for Human and Its Oxidation Mechanism

  • Ikuo, Yamamoto
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.194-199
    • /
    • 2002
  • Many oxidative metabolites of tetrahydrocannabinols (THCs), active components of marijuana, were pharmacologically active, and 11-hydroxy-THCs, 11-oxo-${\Delta}^8$-THC, 7-oxo-${\Delta}^8$-THC, 8$\beta$, 9$\beta$-epoxyhexahydrocannabinol (EHHC), 9$\alpha$, l0$\alpha$-EHHC and 3'-hydroxy-${\Delta}^9$-THC were more active than THC in pharmacological effects such as catalepsy, hypothermia and barbiturate synergism in mice. Cannabidiol (CBD), another major component, was biotransfomred to two novel metabolites, 6-hydroxymethyl-${\Delta}^9$-THC and 3-pentyl-6, 7, 7a, 8, 9, lla-hexahydro-I, 7-dihydroxy-7, 1O-dimethyldibenzo[b, d]oxepin (PHDO) through 8R, 9-epoxy-CBD and 85, 9-epoxy-CBD, respectively. Both metabolites exhibited some pharmacological effects comparable to d9 - THe. Cannabinol (CBN), the other major component, was mainly metabolized to ll-hydroxy-CBN by hepatic microsomes of animals including humans. The pharmacological effects of the metabolite were higher than those of CBN demonstrating that II-hydroxylation of CBN is metabolic activation pathway of the cannabinoid as is the case in THCs. Tolerance and reciprocal cross-tolerance developed to pharmacological effects d8 - THC and ll-hydroxy-d8-THC , and the magnitude of tolerance development produced by the metabolite was significantly higher than that by d8-THC. The results indicate that ll-hydroxy-d8-THC has an important role not only in the pharmacological effects but also its tolerance development of d8 - THe. THCs and their metabolites competed to the specific binding of CP-55, 940, an agonist of cannabinoid receptor, to synaptic membrane from bovine cerebral cortex. The Ki value of THCs and their metabolites were closely paralleled to their pharmacological effects in mice. A novel cytochrome P450 (cyp2c29) was purified and identified as a major enzyme responsible for the metabolic activation of d8-THC at the II-position in the mouse liver. cDNA of CYP2C29 was cloned from a mouse cDNA library and its sequence was determined. The oxidation mechanism of THC by cyp2c29 was proposed.

  • PDF