• 제목/요약/키워드: CYP1 enzymes

검색결과 141건 처리시간 0.022초

Biotransformation of Theophylline in Cirrhotic Rats Induced by Biliary Obstruction

  • Park, Eun-Jeon;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.60-67
    • /
    • 1999
  • The object of this work was to study the pharmacokinetic differences and the cause of these differences in cirrhotic rats induced by biliary obstruction when aminophylline (8 mg/kg as theophylline, i.v.) was administered. The concentrations of theophylline and its major metabolite (1,3-dimethyluric acid) in plasma were determined by HPLC. In addition, formation of 1,3-dimethyluric acid from theophylline in microsomes and the changes in the activity of drug metabolizing enzymes, which are suggested to be involved in theophylline metabolism, were determined. In cirrhotic rats, the systemic clearance of theophylline was reduced to 30% of the control value while AUC (area under the palsma concentration-tie curve) and (t1/2)$\beta$ were increased 1.3 fold and3.5 fold, respectively. The formation of 1,3-dimethyluric acid was decreased to 30% of the control value in microsomes of cirrhotic rat liver. In cirrhotic rat liver, activities of aniline hydroxylase (CYP2E1 related), erythromycin-N-demethylase (CYP3A related), and methoxyresorufin-O-demethylase (CYP1A2 related), which were reported to be related with theophyline metabolism, were decreased to 67%, 53%, and 76% that of normal rat liver, respectively. From the results, it can be concluded that in cirrhotic rats induced by biliary obstruction, the total body clearance of theophylline is markedly reduced and it may be due to decreased activity of drug metabolizing enzymes in liver.

  • PDF

유기주석화합물이 해산 어류의 간장 MFO 효소계에 미치는 영향 (Effects of Tributyltin in vitro on Hepatic Monooxygenase System in Marine Fishes)

  • 전중균;이미희;이지선;심원준;이수형;허형택
    • 환경생물
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2003
  • 본 연구는 내분비교란물질로 알려진 TBTC가 해양생물에게 미치는 영향을 조사하는 연구의 일환으로, 이 화합물에 노출시킨 어류의 간장 MFO 효소계의 반응을 in vitro로 조사하였다. 대상 어류는 개복치(Mola mola), 숭어(Mugil cephalus), 강도다리(Ptatichthys stellatus), 청어(Clupeu pallasii), 붕장어(Astroconger myriaster), 조피볼락 (Sebastes schlegeli), 참돔(Pugrus major), 넙치(Paralichthys olivaceus)이며, 이들의 간장 미크로좀을 2mM의 TBTC와 in vitro (3$0^{\circ}C$, 20분)로 배양하고 cytoch-rome P45O (CYP), cytochrome b5, NAD(P)H -cytochro-me c 환원효소를 비롯한 탈알킬화 효소들(EROD, PROD, MROD, ECOD)의 변화를 조사하였다. TBTC는 환원효소의 측정 시에는 DMSO에, 그리고 그 밖의 효소 측정시에는 메탄올에 녹여 2% 농도로. 첨가하였다. 어류의 간장 CYP 함량은 TBTC와 배양 후 대부분(6 어류/8어류)에서 10% 이하로 크게 저해되었으나, cyto-chrome b5함량은 변함이 없었다. 하지만 NAD(P)H 의존성 환원효소의 반응은 어류에 따라 달랐고, CYP 외에 두 환원효소도 모두 영향을 받아 저해되는 타입 1(개복치, 조피볼락, 청어, 강도다리, 참돔), CYP 외에 NADH 의존성 환원효소만 저해되는 타입 2(붕장어, 숭어)및 CYP 저해되지만 두 환원효소는 영향을 받지 않거나 오히려 유도되는 타입 3 (넙치)으로 구분되었다. 그리고 대부분(7/8)의 어류에서는 NADH 의존성 환원효소가 NADPH 의존성 환원효소에 비해 더욱 저해되는 경향을 보였다. TBTC는 어류의 탈알킬화 효소에도 영향을 미쳤고, 어류별 EROD활성의 저해는 개복치, 참돔, 붕장어, 조피볼락(잔존율 1~7%)>숭어, 청어 (14~30%)>넙치, 강도다리(56~65%)의 순이었으며, ECOD 활성의 저해도 개복치, 참돔, 붕장어 (36~38%)>조피볼락(63%))숭어, 청어, 넙치, 강도다리(90%)의 순으로 비슷한 경향이었다. 한편, 넙치와 강도다리에서는 PROD가 MROD보다 더욱 심하게 저해되었다. 이처럼 어류 간장의 약물대사 효소계는 TBTC에 의한 저해 정도가 어류에 따라 심한 차이를 보였다.

ZR-75-1 human breast cancer cells th study the mechanism of action of PAHs

  • Nano, Min-Kyung;Yhong, Sheen-Yhun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2002년도 추계국제학술대회
    • /
    • pp.171-171
    • /
    • 2002
  • Recent industrial society has human widely exposed to PAHs that are comming from the incomplete combustion of organic material as widerspread environmetal contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. PAHs in the mammalian cells affect CYP1A1 gene expression as well as other phase II drug metabolizing enzymes as UDPGT, NMOR etc. The mechanism of action of PAHs has been studied extensively, however it is not clear how PAHs turn on CYP1A1 in human breast cancer. Our labolatory have been studied the effect of PAHs in the human breast cancer cell lind MCF7. In this study, we examined the ZR-75-1 human breast cancer cells as a new system to evaluate bioactivity of PAHs. ZR-75-1 human breast cancer cell line has been estabilished from the breast cnacer patient, has estrogen receptors and progesteron receptors. We have been able to estbilish long term culture system of this cells then used for the study to observe the effect of PAHs. We demonstrate that PAHs induced the transcription of an aryl hydrocarbon-responsive reporter vector containing the CYP1A1 promoter and 7-ethoxyresolufin O-deethylase(EROD) activity of CYP1A1 enzyme in a concentration-dependant manner. RT-PCR analysises indicated that PAHs significantly up-regulate the constitutive level of CYP1A1 mRNA. Apparently, ZR-75-1 cells have Aryl hydrocarbon recetors, therefore it would be good experimental tool to study the cross-talk between PAHs and steroid actions.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

한국인의 신생아 황달과 UGT1A1 및 CYP1A2 유전자 다형성과의 연관성 (The Association of Neonatal Hyperbilirubinemia with UGT1A1 and CYP1A2 Gene Polymorphism in Korean Neonates)

  • 강훈;임준호;김지숙;김은령;김성도;이희제;정주호
    • Clinical and Experimental Pediatrics
    • /
    • 제48권4호
    • /
    • pp.380-386
    • /
    • 2005
  • 목 적 : 신생아 황달은 백인에 비해 중국, 일본, 한국 등 동아시아인에서 2배 이상 많이 발생하는 것으로 보아 유전적 연관성이 있을 것으로 생각되어 왔고, 최근 일본인, 타이완 중국인, 한국인에서 UGT1A1 유전자의 Gly71Arg 다형성이 신생아 황달과 연관성이 있다고 보고되었다. 선천적으로 UDP-glucuronosyltransferase(UDPGT)에 결함이 있는 경우에는 부경로(alternative pathway)로 CYP1A2 효소를 자극하여 빌리루빈 대사가 이루어진다. 출생 후 6-14주가 되어야 성인 UDPGT 정상치에 도달하기 때문에 신생아 황달에서 빌리루빈 대사에 CYP1A2 부경로가 중요한 역할을 할 것으로 생각된다. 이에 저자들은 UGT1A1과 CYP1A2 유전자의 다형성이 한국인 신생아 황달의 발생과 어떤 연관성이 있는지 알아보고자 본 연구를 시행하였다. 방 법 : 혈중 빌리루빈 수치가 12 mg/dL 이상의 건강하고, 황달의 다른 위험인자가 없는 만삭아 79명과 대조군 68명으로부터 혈액 0.5 cc를 채취하여 DNA을 분리하였다. UGT1A1 유전자는 Polymerase chain reaction(PCR) 후에 염기서열 분석을 통해서 Gly71Arg 유전자 다형성을 확인하였으며, CYP1A2는 제한효소인 MboII를 이용하여 PCR-restriction fragment length polymorphism 방법과 염기서열 분석을 통해서 T2698G 유전자 다형성을 확인하였다. 결 과 : UGT1A1 유전자의 Gly71Arg 다형성은 변이형 대립 유전자 분포가 환자군에서 32%로 대조군 11%보다 높았다(P<0.0001). CYP1A2 유전자의 다형성은 변이형 유전형 분포가 환자군에서는 41.8%, 대조군에서 32.3%로 환자군이 높았으며 통계학적으로 유의하였다(P=0.015). 변이형 대립유전자의 빈도는 환자군에서 21%로 대조군 19%보다 높았으나 통계학적 유의성은 없었다(P=0.706). Gly71Arg와 T2698G의 변이형 발생의 연관성은 없었다(P=0.635). 결 론 : 한국인의 신생아 황달에서 체내의 빌리루빈 대사의 주경로와 부경로에 작용하는 효소의 유전자인 UGT1A1과 CYP1A2의 다형성이 확인되었고, UGT1A1 유전자의 Gly71Arg 다형성은 신생아 황달과 연관이 있었으나 CYP1A2 유전자의 T2698G 다형성은 신생아의 황달과 연관이 없었다.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

Suicidal gene therapy with rabbit cytochrome P450 4B1/2-aminoanthracene or 4-ipomeanol system in human colon cancer cell

  • Jang, Su Jin;Kang, Joo Hyun;Moon, Byung Seok;Lee, Yong Jin;Kim, Kwang Il;Lee, Tae Sup;Choe, Jae Gol;Lim, Sang Moo
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.118-122
    • /
    • 2015
  • Suicidal gene therapy is based on the transduction of tumor cells with "suicide" genes encoding for prodrug-activating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4-ipomeanol (4-IPO) or 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate.In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/2-AA or 4-IPO system were evaluated in HT-29 (human colon cancer cell). pcDNA-CYP4B1 vector was transfected into HT-29 by lipofection and stable transfectant was selected by treatment of hygromycin ($500{\mu}g/mL$) for 3 weeks. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed for confirmation of CYP4B1 expression in CYP4B1 gene transduced cell. The cytotoxic effects of CYP4B1 transduced cell were determined using dye-exclusion assay after treatment of 2-AA or 4-IPO for 96 hrs. Dye-exclusion assay showed that $IC_{50}$ of HT-29 and CYP4B1 transduced HT-29 was 0.01 mM and 0.003 mM after 4-IPO or 2-AA treatment at 96 hrs exposure, respectively. In conclusion, CYP4B1 based prodrug gene therapy probably have the potential for treatment of colorectal adenocarcinoma.

Effects of Immune Stress on Performance Parameters, Intestinal Enzyme Activity and mRNA Expression of Intestinal Transporters in Broiler Chickens

  • Feng, Y.;Yang, X.J.;Wang, Y.B.;Li, W.L.;Liu, Y.;Yin, R.Q.;Yao, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.701-707
    • /
    • 2012
  • Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500) were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV); Group 2 = conventional vaccine (CV); group 3 = lipopolysaccharide (LPS)+conventional vaccine (LPS); group 4 = cyclophosphamide (CYP)+conventional vaccine (CYP). The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG), feed intake (FI), small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05). However, the feed conversion ratio (FCR) remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05). LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.

S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine의 합성 및 발암억제와 관련된 생화학적 특성 (S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine: Synthesis and Biochemical Properties Associated with Chemoprevention)

  • 이병훈
    • Toxicological Research
    • /
    • 제14권2호
    • /
    • pp.177-181
    • /
    • 1998
  • Dithiocarbamate and mixed disulfide containing allyl functions were designed and synthesized as putative chemopreventive agents, i.e. N,N-diallyldithiocarbamate (DATC) and S-(N,N-diallyldithiocarbamoyl)-N-acetylcysteine (AC-DATC). DATC and AC-DATC were administered and the activities of cytosolic glutathione S-transferase (GST), glutathione reductase (GR) and microsomal N-nitrosodiethylamine (NDEA) deethylase were assayed in order to test the effects of these organosulfur com-pounds on the detoxification and metabolic activation system of NDEA. The amounts of hepatic glutathione (GSH and GSSG) was also determined. The administration of DATC to rats led to an increase in the activity of GR and to an inhibition of CYP2E1-mediated NDEA deethylation. AC-DATC induced the activity of GR and GST, increased the hepatic GSH content and inhibited the rate of NDEA deethylation. The level of GSSG was decreased as a consequence of the increased activity of GR. These effects may contribute to possible antimutagenic and anticarcinogenic action of the dithiocarbamates investigated.

  • PDF

약물유전체학과 정신분열병 (Pharmacogenomics and Schizophrenia)

  • 이규영;정인원
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF