• 제목/요약/키워드: CYP1 enzymes

검색결과 140건 처리시간 0.019초

Water Extract of Ash Tree (Fraxinus rhynchophylla) Leaves Protects against Paracetamol-Induced Oxidative Damages in Mice

  • Jeon, Jeong-Ryae
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.612-616
    • /
    • 2006
  • The protective effect of water extract of ash tree leaves (ALE) against oxidative damages was investigated in paracetamol-induced BALB/c mice. Biochemical analysis of anti-oxidative enzymes, immunoblot analyses of hepatic cytochrome P450 2El (CYP2E1), and the gene expression of tumor necrosis factor (TNF-${\alpha}$) were examined to determine the extract's protective effect and its possible mechanisms. BALB/c mice were divided into three groups: normal, paracetamol-administered, and ALE-pretreated groups. A single dose of paracetamol led to a marked increase in lipid peroxidation as measured by malondialdehyde (MDA). This was associated with a significant reduction in the hepatic antioxidant system, e.g., glutathione (GSH). Paracetamol administration also significantly elevated the expression of CYP2E1, according to immunoblot analysis, and of TNF-${\alpha}$ mRNA in liver. However, ALE pretreatment prior to the administration of paracetamol significantly decreased hepatic MDA levels. ALE restored hepatic glutathione and catalase levels and suppressed the expression of CYP2E1 and TNF-${\alpha}$ observed in inflammatory tissues. Moreover, ALE restored mitochondrial ATP content depleted by the drug administration. These results show that the extract of ash tree leaves protects against paracetamol-induced oxidative damages by blocking oxidative stress and CYP2E1-mediated paracetamol bioactivation.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.

Influence of the CYP1A1 T3801C Polymorphism on Tobacco and Alcohol-Associated Head and Neck Cancer Susceptibility in Northeast India

  • Singh, Seram Anil;Choudhury, Javed Hussain;Kapfo, Wetetsho;Kundu, Sharbadeb;Dhar, Bishal;Laskar, Shaheen;Das, Raima;Kumar, Manish;Ghosh, Sankar Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6953-6961
    • /
    • 2015
  • Background: Tobacco and alcohol contain or may generate carcinogenic compounds related to cancers. CYP1A1 enzymes act upon these carcinogens before elimination from the body. The aim of this study was to investigate whether CYP1A1 T3801C polymorphism modulates the relationship between tobacco and alcohol-associated head and neck cancer (HNC) susceptibility among the northeast Indian population. Materials and Methods: One hundred and seventy histologically confirmed HNC cases and 230 controls were included within the study. The CYP1A1 T3801C polymorphism was determined using PCR-RFLP, and the results were confirmed by DNA sequencing. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approaches were applied for statistical analysis. Results: The CYP1A1 CC genotype was significantly associated with HNC risk (P=0.045). A significantly increased risk of HNC (OR=6.09; P<0.0001) was observed in individuals with combined habits of smoking, alcohol drinking and tobacco-betel quid chewing. Further, gene-environment interactions revealed enhanced risks of HNC among smokers, alcohol drinkers and tobacco-betel quid chewers carrying CYP1A1 TC or CC genotypes. The highest risk of HNC was observed among smokers (OR=7.55; P=0.009) and chewers (OR=10.8; P<0.0001) carrying the CYP1A1 CC genotype. In MDR analysis, the best model for HNC risk was the three-factor model combination of smoking, tobacco-betel quid chewing and the CYP1A1 variant genotype (CVC=99/100; TBA=0.605; P<0.0001); whereas interaction entropy graphs showed synergistic interaction between tobacco habits and CYP1A1. Conclusions: Our results confirm that the CYP1A1 T3801C polymorphism modifies the risk of HNC and further demonstrated importance of gene-environment interaction.

유기주석화합물에 단기간 노출시킨 넙치 간장 약물대사효소의 in vivo 및 in vitro 반응 (In vitro and in vivo Responses of MFO Systems in Olive Flounder (Paralichthys olivaceus) Exposed to TBT and TPT for Short-term Period)

  • 전중균;이지선;전미정;심원준;임한규
    • 환경생물
    • /
    • 제22권1호
    • /
    • pp.177-183
    • /
    • 2004
  • 유기주석화합물인 tributyltin chloride (TBTC), tributyltin oxide (TBTO)와 triphenyltin chloride (TPTC)를 넙치 간장으로 만든 미크로좀에 in vitro적으로 노출시켜서 이들 화합물의 대사에 관여하는 mixed function oxidase (MFO) 중 cytochrome P450 (CYP) 농도와 7-ethoxyresorufin deethylase (EROD) 활성의 변화를 조사하였으며, 또한 in vivo 실험에서는 TPTC를 넙치에게 복강주사(7.5 mg $kg^{-1}$ BW)하여 간장의 MFO (CYP농도, NADPH cytochrome c 환원효소 활성, NADH chtochrome b5 환원 효소 활성, EROD 활성) 반응을 경시적으로 조사하였다. 그 결과, in vitro에서는 TBTC, TBTO 및 TPTC가 모두 CYP 농도와 EROD 활성을 저해하였으며, 저해력은 TPTC가 가장 컸고 이어서 TBTO, TBTC의 순이었다. 유기주석화합물의 노출농도와 노출시간과 비례하면서 저해정도가 커졌으며, 특히 EROD활성의 저해는 노출농도에 크게 의존적이었다. 그리고 in vivo실험에서도 유기주석 화합물은 CYP농도, NADPH cytochrome c 환원효소 활성, NADH cytochrome b5 환원효소 활성, EROD 활성을 억제하였다. EROD 활성은 오염물질에 의한 반응이 민감하고 재현성도 있어 바람직한 측정지표로 이용될 수가 있을 것이다.

Pharmacokinetic Interaction of Chrysin with Caffeine in Rats

  • Noh, Keumhan;Oh, Do Gyeong;Nepal, Mahesh Raj;Jeong, Ki Sun;Choi, Yongjoo;Kang, Mi Jeong;Kang, Wonku;Jeong, Hye Gwang;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.446-452
    • /
    • 2016
  • Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Kim, Sunjoo;Kim, Ju-Hyun;Kim, Dong Kyun;Lee, Jaesin;In, Sangwhan;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.86-90
    • /
    • 2018
  • Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and toxicity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatography-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline.

SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향 (Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation)

  • 박미라;김아영;나순영;김홍만;이강석;배지현;고정재
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권2호
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2는 winged-helix/forkhead(FH) 도메인 전사인자로서 FOXL2 유전자에 돌연변이가 발생할 경우 blepharophimosis-ptosis-epicanthus inversus syndrome이라 불리는 BPES 질병이 유발되게 된다. BPES는 상염색체 우성인 유전적 질환이다. BPES type I의 환자는 조기난소부전증(POF)과 안검하수 증상이 함께 나타나는 반면, BPES type II의 경우 안검하수 및 소안검 등 안면기형만이 유발된다. FOXL2 단백질이 결여된 난소에서 granulosa 세포의 분화가 멈추는 것으로 보아 FOXL2가 정상적인 난소의 folliculogenesis에 필수적인 역할을 하고 있음을 시사한다. 이전의 연구 결과에서, 본 연구진은 FOXL2와 상호작용하는 단백질에 대한 스크리닝을 통해 스테로이드 합성효소인 CYP19 전사활성에 영향을 미치는 steroidogenic factor-1(SF-1)을 동정하였다. 이번 연구를 통해 FOXL2가 CYP19의 전사를 향상시키고, SF-1에 의한 CYP19의 전사를 더욱 촉진시킨다는 것을 증명하였다. 이와 반대로, BPES 타입 I과 II에서 발견된 FOXL2의 돌연변이형들은 SF-1에 의해 증가된 CYP19의 전사활성을 향상시키는 능력이 감소함을 보여주었다. 본 실험을 통해 FOXL2 돌연변이에 의해 유발되어지는 BPES 질환의 병리생리학적인 이해에 대해 도움을 줄 수 있는 FOXL2의 야생형과 돌연변이형 사이의 서로 다른 기능적인 차이점을 규명하였다.

Mechanistic Insights into the Chemopreventive Action of Phenethy1 Isothiocyanate against Ν-Nitrosobis(2-Oxopropyl) Amine-Induced Carcinogenesis

  • Lee, In-Seon
    • Preventive Nutrition and Food Science
    • /
    • 제1권2호
    • /
    • pp.227-229
    • /
    • 1996
  • The effects of phenthyl isothiocyanate(PEIFTC) on xenobiotic metabolizing enzymes and cell kinetics in the target organs for Ν-nirtosobis(2-oxopropyl) amine(BOP)-tumorigenicity were investigated in female Syrian golden hamsters in order to gain the mechanistic insigths into the chemopreventive action of PEITS against BOP-initiated lung and pancreatic carcinogenesis in hamsters. Hamsters were given BOP subcuteneo-usly(s.c.) and/or PEITC by gavage 2h prior to the BOP treatment. Eight and 24h after the PEITC administration, animals were sacrificed for analyzing P450 isoenzymes, glutathine(GSH), glutathione S-transferase(GST) and cell kinetics. The PEITC pretreatment significantly reduced the hepatic P450 isoenzume levels such as CYP2B1 and DYP1A1 which were significantly increased by the BOP treatment. However, PEITC did not affect the CYP levels in the pancreas and lung. Interestingly, the PEITC pretreatment rather lowered the heparic GST and GSH levels, regradless of BOP administration. Proliferating cell nuclear antigen(PCNA)- labeling indices were dose dependently decreased by PEITC in the pancreas acini and ducts, bronchioles, and renal tubules in which the cell replication was significantly affected by BOP. These results thus suggest that PEITC exerts the chemopreventive effects in hamsters by influencing xenobiotic matabolizing phase I enzymes in the liver and regulating cell kinetics in the target organs.

  • PDF

Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications

  • Guengerich, F. Peter
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.1-18
    • /
    • 2022
  • Drug-drug interactions are a major cause of hospitalization and deaths related to drug use. A large fraction of these is due to inhibition of enzymes involved in drug metabolism and transport, particularly cytochrome P450 (P450) enzymes. Understanding basic mechanisms of enzyme inhibition is important, particularly in terms of reversibility and the use of the appropriate parameters. In addition to drug-drug interactions, issues have involved interactions of drugs with foods and natural products related to P450 enzymes. Predicting drug-drug interactions is a major effort in drug development in the pharmaceutical industry and regulatory agencies. With appropriate in vitro experiments, it is possible to stratify clinical drug-drug interaction studies. A better understanding of drug interactions and training of physicians and pharmacists has developed. Finally, some P450s have been the targets of drugs in some cancers and other disease states.