Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.197

Pharmacokinetic Interaction of Chrysin with Caffeine in Rats  

Noh, Keumhan (College of Pharmacy, Yeungnam University)
Oh, Do Gyeong (College of Pharmacy, Yeungnam University)
Nepal, Mahesh Raj (College of Pharmacy, Yeungnam University)
Jeong, Ki Sun (College of Pharmacy, Yeungnam University)
Choi, Yongjoo (College of Pharmacy, Yeungnam University)
Kang, Mi Jeong (College of Pharmacy, Yeungnam University)
Kang, Wonku (College of Pharmacy, Chung-Ang University)
Jeong, Hye Gwang (College of Pharmacy, Chungnam National University)
Jeong, Tae Cheon (College of Pharmacy, Yeungnam University)
Publication Information
Biomolecules & Therapeutics / v.24, no.4, 2016 , pp. 446-452 More about this Journal
Abstract
Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.
Keywords
Chrysin; Caffeine; Drug interaction; Pharmacokinetics; in vivo;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Blank, J. A., Tucker, A. N., Sweatlock, J., Gasiewicz, T. A. and Luster, M. I. (1987) alpha-Naphthoflavone antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced murine lymphocyte ethoxyresorufin-Odeethylase activity and immunosuppression. Mol. Pharmacol. 32, 169-172.
2 Breinholt, V., Lauridsen, S. T. and Dragsted, L. O. (1999) Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica 29, 1227-1240.   DOI
3 Brown, E., Hurd, N. S., McCall, S. and Ceremuga, T. E. (2007) Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J. 75, 333-337.
4 Chiou, W. L. (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J. Pharmacokinet. Biopharm. 6, 539-546.   DOI
5 Cho, H., Yun, C. W., Park, W. K., Kong, J. Y., Kim, K. S., Park, Y., Lee, S. and Kim, B. K. (2004) Modulation of the activity of proinflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 49, 37-43.   DOI
6 Choi, E. J., Bae, S. H., Park, J. B., Kwon, M. J., Jang, S. M., Zheng, Y. F., Lee, Y. S., Lee, S. J. and Bae, S. K. (2013) Simultaneous quantification of caffeine and its three primary metabolites in rat plasma by liquid chromatography-tandem mass spectrometry. Food Chem. 141, 2735-2742.   DOI
7 Galijatovic, A., Otake, Y., Walle, U. K. and Walle, T. (1999) Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica 29, 1241-1256.   DOI
8 Hodek, P., Trefil, P. and Stiborova, M. (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139, 1-21.   DOI
9 Hsu, C. Y., Chiang, W. C., Weng, T. I., Chen, W. J. and Yuan, A. (2004) Laryngeal edema and anaphalactic shock after topical propolis use for acute pharyngitis. Am. J. Emerg. Med. 22, 432-433.   DOI
10 Kellis, J. T., Jr. and Vickery, L. E. (1984) Inhibition of human estrogen synthetase (aromatase) by flavones. Science 225, 1032-1034.   DOI
11 Kim, N. H., Lee, S., Kang, M. J., Jeong, H. G., Kang, W. and Jeong, T. C. (2014) Protective effects of diallyl sulfide against thioacetamideinduced toxicity: a possible role of cytochrome P450 2E1. Biomol. Ther. (Seoul) 22, 149-154.   DOI
12 Koop, D. R. (1986) Hydroxylation of p-nitrophenol by rabbit ethanolinducible cytochrome P-450 isozyme 3a. Mol. Pharmacol. 29, 399-404.
13 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
14 Lubet, R. A., Mayer, R. T., Cameron, J. W., Nims, R. W., Burke, M. D., Wolff, T. and Guengerich, F. P. (1985) Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophys. 238, 43-48.   DOI
15 Mandel, H. G. (2002) Update on caffeine consumption, disposition and action. Food Chem. Toxicol. 40, 1231-1234.   DOI
16 Noh, K., Nepal, M. R., Jeong, K. S., Kim, S. A., Um, Y. J., Seo, C. S., Kang, M. J., Park, P. H., Kang, W., Jeong, H. G., Jeong, T. C. (2015) Effects of baicalin on oral pharmacokinetics of caffeine in rats. Biomol. Ther. (Seoul) 23, 201-206.   DOI
17 Moon, J. Y., Lee, D. W. and Park, K. H. (1998) Inhibition of 7-ethoxycoumarin O-deethylase activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica 28, 117-126.   DOI
18 Nash, T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416-421.   DOI
19 Noh, K., Seo, Y. M., Lee, S. K., Bista, S. R., Kang, M. J., Jahng, Y., Kim, E., Kang, W. and Jeong, T. C. (2011) Effects of rutaecarpine on the metabolism and urinary excretion of caffeine in rats. Arch. Pharm. Res. 34, 119-125.   DOI
20 Pushpavalli, G., Kalaiarasi, P., Veeramani, C. and Pugalendi, K. V. (2010) Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur. J. Pharmacol. 631, 36-41.   DOI
21 Shin, H. C., Kim, H. R., Cho, H. J., Yi, H., Cho, S. M., Lee, D. G., Abd El-Aty, A. M., Kim, J. S., Sun, D. and Amidon, G. L. (2009) Comparative gene expression of intestinal metabolizing enzymes. Biopharm. Drug Dispos. 30, 411-421.   DOI
22 Siess, M. H., Leclerc, J., Canivenc-Lavier, M. C., Rat, P. and Suschetet, M. (1995) Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes. Toxicol. Appl. Pharmacol. 130, 73-78.   DOI
23 Siess, M.-H., Le Bon, A.-M., Canivenc-Lavier, M.-C., Amiot, M.-J., Sabatier, S., Aubert, S. Y. and Suschetet, M. (1996) Flavonoids of honey and propolis: characterization and effects on hepatic drugmetabolizing enzymes and benzo[a]pyrene-DNA binding in rats. J. Agric. Food Chem. 44, 2297-2301.   DOI
24 Walle, T., Otake, Y., Galijatovic, A., Ritter, J. K. and Walle, U. K. (2000) Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in the human hepatoma cell line hep G2. Drug Metab. Dispos. 28, 1077-1082.
25 Tsai, Y. C., Wang, Y. H., Liou, C. C., Lin, Y. C., Huang, H. and Liu, Y. C. (2012) Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity. Chem. Res. Toxicol. 25, 191-196.   DOI
26 Tsujimoto, M., Horie, M., Honda, H., Takara, K. and Nishiguchi, K. (2009) The structure-activity correlation on the inhibitory effects of flavonoids on cytochrome P450 3A activity. Biol. Pharm. Bull. 32, 671-676.   DOI
27 Villar, I. C., Jimenez, R., Galisteo, M., Garcia-Saura, M. F., Zarzuelo, A. and Duarte, J. (2002) Effects of chronic chrysin treatment in spontaneously hypertensive rats. Planta Med. 68, 847-850.   DOI
28 Walle, T., Otake, Y., Brubaker, J. A., Walle, U. K. and Halushka, P. V. (2001) Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. 51, 143-146.   DOI
29 Walle, U. K., Galijatovic, A. and Walle, T. (1999) Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 58, 431-438.   DOI
30 Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W. and Smith, P. C. (2008) Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 36, 65-72.
31 Wolfman, C., Viola, H., Paladini, A., Dajas, F. and Medina, J. H. (1994) Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav. 47, 1-4.