• Title/Summary/Keyword: CYP inhibition

Search Result 126, Processing Time 0.026 seconds

Dual positional substrate specificity of rice allene oxide synthase-1: insight into mechanism of inhibition by type II ligand imidazole

  • Yoeun, Sereyvath;Rakwal, Randeep;Han, Oksoo
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Phylogenetic and amino acid sequence analysis indicated that rice allene oxide synthase-1 (OsAOS1) is CYP74, and is clearly distinct from CYP74B, C and D subfamilies. Regio- and stereo-chemical analysis revealed the dual substrate specificity of OsAOS1 for (cis,trans)-configurational isomers of 13(S)- and 9(S)-hydroperoxyoctadecadienoic acid. GC-MS analysis showed that OsAOS1 converts 13(S)- and 9(S)-hydroperoxyoctadecadi(tri)enoic acid into their corresponding allene oxide. UV-Visible spectral analysis of native OsAOS1 revealed a Soret maximum at 393 nm, which shifted to 424 nm with several clean isobestic points upon binding of OsAOS1 to imidazole. The spectral shift induced by imidazole correlated with inhibition of OsAOS1 activity, implying that imidazole may coordinate to ferric heme iron, triggering a heme-iron transition from high spin state to low spin state. The implications and significance of a putative type II ligand-induced spin state transition in OsAOS1 are discussed.

Pharmacokinetic Interaction Between Atorvastatin and Nifedipine (아톨바스타틴과 니페디핀의 약물동태학적 상호작용)

  • Moon, Hong-Seop;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2010
  • The purpose of this study was to investigate the effect of atorvastatin on the pharmacokinetics of nifedipine (6 mg/kg) after oral administration of nifedipine with or without atorvastatin (0.5 and 2.0 mg/kg) in rats, and also was to evaluate to the effect of atorvastatin on the CYP3A4 activity. The 50% inhibiting concentration ($IC_{50}$) values of atorvastatin on CYP3A4 activity is 46.1 ${\mu}M$. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner. Coadministration of atorvastatin increased significantly (p<0.05, 2.0 mg/kg) the plasma concentration-time curve (AUC) and the peak concentration ($C_{max}$) of nifedipine compared to the control group. The relative bioavailability (RB%) of nifedipine was increased from 1.15- to 1.37-fold. Coadministration of atorvastatin did not significantly change the terminal half-life ($T_{1/2}$) and the time to reach the peak concentration ($T_{max}$) of nifedipine. Based on these results, we can make a conclusion that the significant changes of these pharmacokinetic parameters might be due to atorvastatin, which possesses the potency to inhibit the metabolizing enzyme (CYP3A4) in the liver and intestinal mucosa, and also inhibit the P-glycoprotein (P-gp) efflux pump in the intestinal mucosa. It might be suggested that atorvastatin altered disposition of nifedipine by inhibition of both the first-pass metabolism and P-glycoprotein efflux pump in the small intestine of rats. In conclusion, the presence of atorvastatin significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of atorvastatin with nifedipine should require close monitoring for potential drug interation.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K. N. Min;K. E. Joung;M. J. Cho;J. Y. An;Kim, D. K.;Y. Y. Sheen
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.181-181
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa Ⅰ and MCF-7 cells using transient transfection system with p1A1-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAt-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HBAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa Ⅰ cells with p1A1-Luc, HDAC inhibitors increased the basal promoter activity only Also, we have investigated the effects of HDAC inhibitors on the human breast and prostate cancer cells in terms of cell proliferation and apoptosis based on SRB assay. IN2001 as well as trichostatin A inhibited the MCF-7, MDA-MB-231, MDA-MB-468, T47D, ZR75-1, PC3 cell growth dose-dependently. The growth inhibition of these cells with HDAC inhibitors was associated with profound morphological change, which suggests the HDAC inhibitors induced apoptosis of cells. The result of cell cycle analysis after 24h exposure of IN2001 showed G2/M cell cycle arrest in MCF-7 cells and apoptosis in T47D and MDA-MB-231 cells.

  • PDF

The Effect to Drug Metabolizing Enzyme Cytochrome P450 3A4 by Chungyulyak (청열약 수종의 Cytochrome P450 3A4 효소활성도에 미치는 영향)

  • Jo, Hee-Chan;Shin, Yong-Cheol;Ko, Seong-Gyu
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.3
    • /
    • pp.99-113
    • /
    • 2008
  • In this study, the author experimented the influence of five herbal medicines, which are Lonicera japonica Thunb, Paeonia suffruticosa Andr., Fraxinus rhynchophylla Hance, Gardenia jasminoides Ellis, Scutellaria baicalensis George which are called 'Chungyulyak(淸熱藥)' on drug metabolizing enzyme cytochrome P450 3A4 in Human Liver Microsome. Above all, the reason for this study is that herbal medicines can be assumed that herbs might have interactions with drugs, other herbs, alcohol and chemicals whether those are much better synergy effects than expected effects when the medicine was treated alone or not. As a result, we showed that all of five traditional herbal medicines had no CYP 3A4 inhibition effect on 10, 20, 30, 40, $50{\mu}g/m{\ell}$ doses in Human Liver Microsome. However, this result are mostly not enough to prove that PMT has a CYP 3A4 inhibition effect. Moreover, it is not that those rates showed that those herbal medicines have CYP 3A4 induction effect. In conclusion, the result could support that those herbal medicines are more safe than chemical drugs even if this is the basic step to prove that result. Therefore, more specific studies to support this result, which are Kinetic study, cell and animal study then finally until clinical research, are required.

  • PDF

Changes in the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, When Co-Administered with Amlodipine in Rats

  • Kim, Seon-Hwa;Kim, Kyu-Bong;Um, So-Young;Oh, Yun-Nim;Chung, Myeon-Woo;Oh, Hye-Young;Choi, Ki-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2009
  • Rosiglitazone maleate (RGM) is widely used for improving insulin resistance. RGM is a moderate inhibitor of cytochrome P450 2C8 (CYP2C8) and is also mainly metabolized by CYP2C8. The aim of this study was to determine whether the effect of RGM on CYP2C8 is altered by co-treatment with other drugs, and whether amlodipine camsylate (AC) changes the pharmacokinetics (PK) of RGM. Of the 11 drugs that are likely to be co-administered with RGM in diabetic patients, seven drugs lowered the $IC_{50}$ value of RGM on CYP2C8 by more than 80%. In vitro CYP2C8 inhibitory assays of RGM in combination with drugs of interest showed that the $IC_{50}$ of RGM was decreased by 98.9% by AC. In a pharmacokinetic study, Sprague-Dawley (SD) rats were orally administered 1 mg/kg of RGM following by single or 10-consecutive daily administrations of 1.5 mg/kg/day of AC. No significant changes in the pharmacokinetic parameters of RGM were observed after a single administration of AC, but the AUC and $C_{max}$ values of RGM were significantly reduced by 36% and 31%, respectively, by multiple administrations of AC. In conclusion, RGM was found to be affected by AC by in vitro CYP2C8 inhibition testing, and multiple dosing of AC appreciably changed the pharmacokinetics of RGM. These findings suggest that a drug interaction exists between AC and RGM.

Pharmacokinetic Interaction between Ticlopidine and Nimodipine in Rats (티크로피딘과 니모디핀과의 약동학적 상호작용)

  • Kim, Yang-Woo;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.20 no.3
    • /
    • pp.200-204
    • /
    • 2010
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of nimodipine in rats. Pharmacokinetic parameters of nimodipine were determined in rats after oral administration of nimodipine (16 mg/kg) with or without ticlopidine (3 or 10 mg/kg). Ticlopidine inhibited cytochrome P450 (CYP)3A4 activity. Ticlopidine significantly (p<0.05, 10 mg/kg) increased the area under the plasma concentration-time curve (AUC) of nimodipine and ticlopidine significantly (p<0.05, 10 mg/kg) prolonged the terminal half-life ($t_{1/2}$) of nimodipine. Ticlopidine significantly (p<0.05, 10 mg/kg) decreased the total body clearance ($CL_t$). The absolute bioavailability (AB%) and relative bioavailability (RB%) of nimodipine by presence of ticlopidine were increased by 14% and by 42%, respectively, compared to the control. Based on these results, the increased bioavailability of nimodipine might be due to inhibition of the metabolizing enzyme cytochrome P450 (CYP)3A4 in the liver or intestinal mucosa and/or reducing total body clearance by ticlopidine.

S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine: Synthesis and Biochemical Properties Associated with Chemoprevention (S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine의 합성 및 발암억제와 관련된 생화학적 특성)

  • 이병훈
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.177-181
    • /
    • 1998
  • Dithiocarbamate and mixed disulfide containing allyl functions were designed and synthesized as putative chemopreventive agents, i.e. N,N-diallyldithiocarbamate (DATC) and S-(N,N-diallyldithiocarbamoyl)-N-acetylcysteine (AC-DATC). DATC and AC-DATC were administered and the activities of cytosolic glutathione S-transferase (GST), glutathione reductase (GR) and microsomal N-nitrosodiethylamine (NDEA) deethylase were assayed in order to test the effects of these organosulfur com-pounds on the detoxification and metabolic activation system of NDEA. The amounts of hepatic glutathione (GSH and GSSG) was also determined. The administration of DATC to rats led to an increase in the activity of GR and to an inhibition of CYP2E1-mediated NDEA deethylation. AC-DATC induced the activity of GR and GST, increased the hepatic GSH content and inhibited the rate of NDEA deethylation. The level of GSSG was decreased as a consequence of the increased activity of GR. These effects may contribute to possible antimutagenic and anticarcinogenic action of the dithiocarbamates investigated.

  • PDF

Protective Effect of Crataegus pinnatifida and Cinnamomum cassia on Ethanol-induced Cytotoxicity and DNA Damage in HepG2 Cells

  • Kim, Nam Yee;Song, Eun Jeong;Heo, Moon Young
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.237-242
    • /
    • 2014
  • Plant extracts produced from branches of Crataegus pinnatifida and barks of Crataegus pinnatifida inhibited ethanol-induced cytotoxicity and DNA damage in liver cells. Furthermore, these two extracts inhibited the expression and activities of CYP2E1 enzyme. Cinnamomum cassia had a better effect on inhibition of DNA damage than Crataegus pinnatifida, as well as showed a high tendency to inhibit CYP2E1 expression and catalytic activities. It is considered that extracts produced from Crataegus pinnatifida or Cinnamomum cassia have an effect to reduce ethanol-induced cytotoxicity and DNA damage in liver cells. Therefore, we suggest to use Crataegus pinnatifida and Cinnamomum cassia and their ingredients as potential candidate substances to prevent and treat ethanol-induced cytotoxicity and genotoxicity in liver cells.

Inhibitory effect of honokiol and magnolol on cytochrome P450 enzyme activities in human liver microsomes

  • Joo, Jeongmin;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.34-37
    • /
    • 2013
  • Honokiol and magnolol, the major bioactive neolignans of magnolia officinalis, are the most important constituents of the crude drug prescriptions that are used in the therapy of neuroses and various nervous disorders. There have been limited reports on the effects of neolignoid compounds on human cytochrome P450 activity. Therefore, the inhibitory effects of honokiol and magnolol on seven human cytochrome P450 s were evaluated in human liver microsomes. Honokiol and magnolol showed the most potent inhibition of CYP1A2-mediated phenacetin O-deethylase activity ($IC_{50}$ values of 3.5 and 5.4 mM, respectively) among the seven P450s tested. These in vitro data indicate that neolignan compounds can inhibit the activity of CYP1A2 and suggest that these compounds should be examined for potential pharmacokinetic drug interactions in vivo.