• Title/Summary/Keyword: CYP

Search Result 932, Processing Time 0.02 seconds

Protective Effect of Genistein and Korean Fermented Soybean (Chungkookjang) Extract against Benzo(a)pyrene Induced DNA Damage in HepG2 Cells (Benzo(a)pyrene 유도 DNA 손상에 대한 Genistein과 청국장추출물의 보호효과)

  • Song, Eun-Jeong;Kim, Hyun-Pyo;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • Chungkookjang (CKJ) is a fermented soybean product and one of favorite traditional foods in Korea. In this study, the alcoholic extract from Korean fermented soybean (CKJ) and its one of major flavonoids, genistein were evaluated for their protective effect against B(a)P induced cytotoxicity and DNA damage in HepG2 cells. CKJ extract and genistein decreased B(a)P-induced cell cytotoxicity. CKJ extract inhibited DNA single strand breaks evaluated by single cell gel electrophoresis. From RT-PCR study, it was revealed that CKJ extract decrease DNA damage induced in HepG2 cells expressing CYP1A1 and 1A2 by B(a)P. The metabolizing activities of CYP1A1 and CYP1A2, as measured by the 7-alkoxy resorufin O-deethylation (AROD) assay, showed that CKJ extract and genistein inhibited CYP1A1 and CYP1A2 activities. Genistein may contribute to these biological effects of CKJ extract at least in part. All these results indicate that CKJ extract and genistein may be useful for protection against B(a)P-induced cytotoxicity and DNA damage. Therefore, the alcoholic extract of Korean fermented soybean (CKJ) is suggested to be promising functional food which can prevent the cellular genotoxicity of dietary and lifestyle related carcinogens.

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis

  • Khanom, Sanjida;Jang, Jinhoon;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.645-653
    • /
    • 2019
  • Background: Cytochrome P450 enzymes catalyze a wide range of reactions in plant metabolism. Besides their physiological functions on primary and secondary metabolites, P450s are also involved in herbicide detoxification via hydroxylation or dealkylation. Ginseng as a perennial plant offers more sustainable solutions to herbicide resistance. Methods: Tissue-specific gene expression and differentially modulated transcripts were monitored by quantitative real-time polymerase chain reaction. As a tool to evaluate the function of PgCYP736A12, the 35S promoter was used to overexpress the gene in Arabidopsis. Protein localization was visualized using confocal microscopy by tagging the fluorescent protein. Tolerance to herbicides was analyzed by growing seeds and seedlings on Murashige and Skoog medium containing chlorotoluron. Results: The expression of PgCYP736A12 was three-fold more in leaves compared with other tissues from two-year-old ginseng plants. Transcript levels were similarly upregulated by treatment with abscisic acid, hydrogen peroxide, and NaCl, the highest being with salicylic acid. Jasmonic acid treatment did not alter the mRNA levels of PgCYP736A12. Transgenic lines displayed slightly reduced plant height and were able to tolerate the herbicide chlorotoluron. Reduced stem elongation might be correlated with increased expression of genes involved in bioconversion of gibberellin to inactive forms. PgCYP736A12 protein localized to the cytoplasm and nucleus. Conclusion: PgCYP736A12 does not respond to the well-known secondary metabolite elicitor jasmonic acid, which suggests that it may not function in ginsenoside biosynthesis. Heterologous overexpression of PgCYP736A12 reveals that this gene is actually involved in herbicide metabolism.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.

Cholesterol side-chain cleavage enzyme deficiency caused by a novel homozygous variant in P450 sidechain cleavage enzyme gene (CYP11A1) in a 46,XX Korean girl

  • Ye Ji Kim;Sun Cho;Hwa Young Kim;Young Hwa Jung;Jung Min Ko;Chang Won Choi;Jaehyun Kim
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2023
  • The CYP11A1 gene encodes for the cholesterol side-chain cleavage enzyme (P450scc), which initiates steroid hormone biosynthesis. Defective P450scc activity results in severe glucocorticoid and mineralocorticoid deficiencies. We describe a case of P450scc deficiency due to a novel homozygous CYP11A1 variant inherited from the mother with a possibility of uniparental disomy (UPD). The patient was a female, had no family history of endocrine disease, and showed adrenal insufficiency at 13 days of age. Hormonal analysis with an adrenocorticotropic hormone stimulation test showed both glucocorticoid and mineralocorticoid deficiencies, presumed to be a defect of the early stage of steroidogenesis. Exome sequencing reported a novel homozygous frameshift variant of CYP11A1 (c.284_285del, p.Asn95Serfs*10), which was inherited from the mother. Additionally, homozygosity in 15q22.31q26.2, which included CYP11A1, was identified using a chromosomal microarray. It was suggested that the possibility of maternal UPD was involved as the cause of a P450scc deficiency by unmasking the maternally derived affected allele. To our understanding, P450scc deficiency associated with UPD encompassing CYP11A1 had not been reported in Korea before. Genetic analysis can help diagnose rare causes of primary adrenal insufficiency, including P450scc deficiency.

Biphasic Effects of the Flavonoids Quercetin and Naringenin on the Metabolic Activation of 2-Amino-3,5-dimethylimidazo[4,5-F]quinoline by Salmonella Typhimurium TA1538 Coexpressing Human Cytochrome P450 1A2, NADPH-Cytochrome P450 Reductase, and Cytochrome $b_5$

  • Kang, Il-Hyun;kim, Hyun-Jung;Oh, Hyeyoung;Park, Young-In;Dong, Mi-Sook
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.3
    • /
    • pp.94-98
    • /
    • 2003
  • Quercetin and naringenin are representative flavonoids that not only exert anti estrogenic, cholesterol-lowering and antioxidant activities but also can modulate the metabolism of many xenobiotics. The activity of the specific form(s) of CYP450 is likely to be a major determinant of susceptibility to chemically induced carcinogenesis between which varies among between individuals due to different dietary habits as well as genetic characteristics. People consume cooked meat or fish together with various vegetables containing substantial amounts of quercetin and naringenin that can modify the enzyme activity of CYP1A2 to stimulate or to inhibit the mutagenic activities of HCAs. Heterocyclic amines (HCAs) produced by cooking meat products at high temperatures are promutagens that are activated by cytochrome P450 (CYP) lA2. Using a newly developed Salmonella typhimurium TA1538/1A2bc-b5 strain, we tested the effect of quercetin and naringenin on the mutagenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ). TA1538/1A2bc-b5 bears two plasmids, one expressing human CYP1A2 and NADPH-P450 reductase (NPR), and the other plasmid which expresses human cytochrome b5 (cyp b5). TA1538/1A2bc-b5 cells showed high activities of 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) associated with CYP1A2 and are very sensitive to mutagenesis induced by several HCAs. MeIQ was found to be the strongest mutagen among the HCAs tested in this system. Mutagenicity of MeIQ was enhanced 50 and 42% by quercetin at 0.1 and 1 mM, respectively, but suppressed 82% and 96% at 50 mM and 100 mM. Naringenin also increased the MeIQ-induced mutation about 37% and 22% at 0.1 and 1 mM, but suppressed it 32% and 63% at 50 mM and 100 mM concentrations, respectively, in TA 1538/1A2bc-b5 cells. Thus, they stimulated the MeIQ induced mutation at low concentrations, but strongly suppressed it at high concentrations. This biphasic effect of flavonoids was due to the stimulation or the inhibition of CYP1A2 activity in a dose-dependent manner judging by the activities of EROD or MROD in the Salmonella cells. Collectively, it is likely that the biphasic effects of quercetin and naringenin on the MeIQ-induced mutagenesis in S. typhimurium TA1538/CYP1A2bc-b5 were due to their differential modification of the CYP1A2 activity in these cells.

  • PDF

Association of Genetic Polymorphisms of Aldehyde Dehydrogenase II and CYP2E1 and Clinical Characteristics of Patients with Alcohol Dependence (알코올 의존 환자에서의 Aldehyde Dehydrogenase II와 CYP2E1 유전자 다형성과 임상적 특성간의 연관성)

  • Chung, In-Won;Kim, Yeoung-Rang;Chi, Kyung-Hwan;Kim, Heon
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2002
  • Objective:This study was to explore the relation of genetic polymorphisms of ALDH2 and CYP2E1 to clinical characteristics of alcoholic patients and alcohol induced liver damage. Methods:The genotype and allele frequencies of 128 male hospitalized patients who met DSM-IV criteria for alcohol dependence were compared with 128 healthy male control subjects. The genetic informations of ALDH2 and CYP2E1 were identified with the technique of polymerase chain reaction and restriction fragment length polymorphism. The clinical characteristics of the alcoholic patients were assessed and analyzed in relation to the family history of alcoholism. For the relation of CYP2E1 genetic polymorphism to the liver damage, the blood levels of various liver function indicators such as ALT, AST, and protein were checked out. Results:1) The alcoholic patients with the family history of alcoholism had the earlier onset of age (p=0.001), the longer duration of illness(p=0.045), and higher NCA scores(p=0.018) than those without the family history of alcoholism. 2) Most alcoholic patients were homozygous for $ALDH2^*1$, compared to control subjects.(p=0.000) 3) There was no difference of CYP2E1 distribution between alcoholic patients and control subjects. However, alcoholic patients having mutant c2 allele showed higher alcoholism severity scores(p=0.004) and more hospitalizations(p=0.014) than those having c1 allele. 4) There was no relationship between CYP2E1 genotype and the functional abnormalities of the liver. Conclusion:This study suggests that $ALDH2^*1$ is highly related with alcohol dependence. Also mutant c2 allele of CYP2E1 is correlated with the severity of alcoholism and the number of hospitalization. But genetic polymorphim of CYP2E1 seems to have no relation to liver damages.

  • PDF