• Title/Summary/Keyword: CW-FS model

Search Result 3, Processing Time 0.021 seconds

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

High power tunable Ti:sapphire laser with sub-40fs pulsewidth (40펨토초 미만 펄스폭의 고출력 파장가변 티타늄사파이어 레이저)

  • 임용식;노영철;이기주;김대식;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.430-438
    • /
    • 1999
  • We have utilized soft-aperturing by gain media to develop a high-power tunable Ti:Sapphire laser with sub-40-fs and broad tuning range. The tunable spectral range was only limited by the bandwidth of mirrors. We made use of knife-edge slits near an intra-cavity prism controlled by micro-stepping-motors to tune the center wavelength continuously. The tunability of the center wavelength was ranged from 770 nm to 870 nm, and the measured pulsewidth was sub-40 fs throughout the above spectral range. The shortest pulsewidth was about 17 fs at the center wavelength of 820 nm and the spectral bandwidth was 72 nm. At 5 W pumping power of the Ar-ion laser we obtained average output power of 440 mW~580 mW. For the cw and Kerr-lens mode-lodking conditions, we have evaluated the value of an amplitude modulation to be ${\gamma}=2.5{\times}10^{-8}/W$ from the calculated waists of a Gaussian beam on the Ti:sapphire crystal surface. Using this result we demonstrate that the generation of sub-40-fs Kerr-lens mode-locked pulse can be described by the Ginzberg-Landau model which is a weak pulse shaping model.

  • PDF

Application of aerospace structural models to marine engineering

  • Pagani, A.;Carrera, E.;Jamshed, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.219-235
    • /
    • 2017
  • The large container ships and fast patrol boats are complex marine structures. Therefore, their global mechanical behaviour has long been modeled mostly by refined beam theories. Important issues of cross section warping and bending-torsion coupling have been addressed by introducing special functions in these theories with inherent assumptions and thus compromising their robustness. The 3D solid Finite Element (FE) models, on the other hand, are accurate enough but pose high computational cost. In this work, different marine vessel structures have been analysed using the well-known Carrera Unified Formulation (CUF). According to CUF, the governing equations (and consequently the finite element arrays) are written in terms of fundamental nuclei that do not depend on the problem characteristics and the approximation order. Thus, refined models can be developed in an automatic manner. In the present work, a particular class of 1D CUF models that was initially devised for the analysis of aircraft structures has been employed for the analysis of marine structures. This class, which was called Component-Wise (CW), allows one to model complex 3D features, such as inclined hull walls, floors and girders in the form of components. Realistic ship geometries were used to demonstrate the efficacy of the CUF approach. With the same level of accuracy achieved, 1D CUF beam elements require far less number of Degrees of Freedom (DoFs) compared to a 3D solid FE solution.