• Title/Summary/Keyword: CVS-75 mode

Search Result 48, Processing Time 0.026 seconds

Experimental Study on the Effects of Low Viscosity Engine Oils on Fuel Economy (엔진오일의 저점도화가 차량 연비에 미치는 영향에 관한 실험적 연구)

  • Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.291-296
    • /
    • 2010
  • The purpose of this paper is to study the fuel economy improvement experimentally when the viscosity of engine oil is lowered. The emissions are measured for CVS-75 mode with SAE viscosity grades. The test results indicate that a close correlation has been found between the engine oil viscosity and the fuel economy. The lowering of engine oil viscosity causes the reduction of friction loss which has a very close relation with the fuel economy. These results as the lowering of engine oil viscosity will be a important factor for improvement of the fuel economy and reduction of the $CO_2$ emission.

Evaluation of E-EGR Valve for Light Duty Diesel Vehicle (소형디젤엔진의 배기가스 재순환용 전자식 밸브의 특성해석 및 차량적용 평가)

  • Song, Chang-Hoon;Lee, Jin-Wook;Jeong, Young-Il;Yang, Kab-Jin;Lee, Chang-Hoon;Lee, Hyun-Woo;Cha, Kyung-Ok
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.185-192
    • /
    • 2001
  • In this study the characteristics of E-EGR valve developed by UNICK were analyzed and the feasibility of application to vehicles were evaluated. Smart car(3L/100km, cdi version) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benchs, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

  • PDF

A Study on the Characteristics of Carbon Dioxide Emissions from Gasoline Passenger Cars (국내 휘발유 승용차의 CO2 배출 현황)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Jung, Sung-Woon;Jeon, Min-Seon;Kim, Dae-Wook;Eom, Myung-Do;Kim, Jong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.58-64
    • /
    • 2007
  • As the concerns regarding global worming were increased, the pressure of greenhouse gas(GHG) emission reduction on mobile source was also increased. Carbon dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. Therefore automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. In this study, in order to investigate $CO_2$ emission characteristics from gasoline passenger cars(PC), which is the most dominant vehicle type in Korea, 106 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel efficiency were measured. The emission characteristics by displacement, gross vehicle weight, vehicle speed and CVS-75/vehicle speed mode were discussed. Test modes were vehicle speed modes and CVS-75 mode that have been used to develop emission factors and to regulate for light-duty vehicle in Korea. It was found that $CO_2$ emissions showed higher large displacement, heavy gross vehicle weight, low vehicle speed and CVS-75 mode than small displacement, light gross vehicle weight, high vehicle speed and vehicle speed mode, respectively. From these results, correlation between $CO_2$ emission and fuel efficiency was also determined. The results of this study will contribute to domestic greenhouse gas emissions calculation and making the national policy for climate change.

A Theoretical Study on Fuel Economy Improvements by Pneumatic Type Braking Energy Regeneration System Using the Scroll Mechanism (스크롤 기기 이용 공압식 회생제동시스템의 연비향상 효과에 관한 연구)

  • Shin, Dong-Gil;Kim, Young-Min;Kim, Yong-Rae
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.286-291
    • /
    • 2011
  • The hybrid vehicle has a good fuel economy with a electric type braking energy regeneration system. This paper introduced a novel pneumatic type braking energy regeneration system. The novel system use a scroll mechanism which have both compression function and expansion function. While vehicle is decelerating, the scroll machinery, being operated as a scroll compressor, compress a atmospheric air to save the vehicle's kinetic energy and reuse a compressed air which is reserved in a air tank while vehicle is accelerating. In order to analyze fuel improvements by applying braking energy regeneration system to a vehicle, we simulated the rate of braking energy regeneration through CVS-75 mode driving patterns.

Nano-particles emission characteristics of GDI vehicles using Engine Exhaust Particle Sizer (Engine Exhaust Particle Sizer를 통한 GDI 자동차에서 발생하는 나노미세입자 배출특성 분석)

  • Jang, Jihwan;Lee, Jongtae;Kim, Kijoon;Kim, Jeongsoo;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.95-96
    • /
    • 2014
  • In this study, the nano-particle emitted from Gasoline Direct Injection(GDI) vehicles was measured using the Engine Exhaust Particle Sizer(EEPS) on a chassis dynamometer. In addition, driving mode were divided into cold start mode(CVS-75, NEDC) and hot start mode(NIER-6, NIER-9) to evaluated the characteristics in the various operating conditions. The Particle Number(PN) concentration was analyzed for various driving patterns, i.e., acceleration, deceleration, idling, cruising and the phases of mode. In a result, Total concentration of PN for size was concentrated from 50 to 100 nm and acceleration represents the highest concentration among the driving pattern. It is believed that the increases quantity of fuel, and mixture will be richer than other patterns.

  • PDF

A Study on Hazardous Air Pollutant Emissions From Diesel Engines Utilizing DME Fuel (DME를 이용한 경유자동차의 유해대기오염물질 발생 특성 연구)

  • Lim, Yun-Sung;Seo, Choong-Youl;Kwack, Soon-Chul;Lee, Jong-Tae;Park, Jung-Min;Kang, Dae-Il;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Duk;Lim, Yui-Soon;Dong, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • Recently, lots of researchers have been attracted to develop various alternative fuels and to use renewable fuels in order to solve the exhaust emission problems. DME (Dimethylether) is synthetic fuel, and can be produced from natural gas, coal and biomass. The emission is clean because it contains little sulfur and aromatic components In this study, the fuel was tested to investigate the applicability as an alternative fuel for diesel. This study was carried out by comparing the exhaust emissions and performance of diesel engine with DME, ULSD (ultra low sulfur diesel), LSD (low sulfur diesel) respectively. In order to measure regulated emissions, CO, $NO_{3}$, HC from vehicle different fuel types were used on chassis dynamometer CVS (constant volume sampler)-75 mode and EPA TO-I1A method was chosen for aldehydes analysis.

Exhaust VOCs Emission Characteristics from Motor Vehicles (자동차의 배기관 VOCs 배출 특성)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Han, Jong-Soo;Kim, Sun-Moon;Lim, Cheol-Soo;Kim, Dae-Wook;Lee, Dong-Min;Lee, Joong-Koo;Eom, Myung-Do;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

Development of Oxidation Catalyst for Diesel Engine (디젤엔진 배기가스 정화용 산화촉매 개발)

  • 최경일;최용택;유관식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.529-537
    • /
    • 2000
  • Several Pt-based oxidation catalysts with different loading were prepared with various metal precursor solutions and characterized with H$_2$ chemisorption and TEM for Pt particle size. V was added to Pt-based catalyst for inhibiting SO$_2$oxidation reaction, as result, Pt-V/Ti-Si catalyst prepared by ERMS(Free Reduced Metal in Solution) method showed high enough activity and better inhibition on SO$_2$oxidation than Pt only catalyst. Optimum Pt particle size for diesel oxidation reaction turned out to be the size of around 20 nm. A prototype catalyst was prepared for light=duty diesel passenger car, and teated for the emission reduction performance with Korean regulation test mode(CVS-75 mode) on chassis dynamometer. The catalyst shows the performance reduction of 75~94% for CO, 53~67% for HC and 10~31% for PM. In the case of heavy-duty diesel catalyst, the domestic formal regulation teat mode D-13 was adopted for both Na engine and Turbo engine. The conversions of CO and THC are high enough(86% and 41%) while the reductions of NOx and PM are relatively low(3~11%).

  • PDF

Comparisons of the Particle Emission Characteristics Between GDI and MPI Vehicles (GDI와 MPI 자동차의 미세입자 배출특성 비교)

  • Lee, Jongtae;Kim, Kijoon;Kim, Jeongsoo;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.182-187
    • /
    • 2014
  • As the regulations for Particulate Matter (PM) and Particle Number (PN) emissions from Gasoline Direct Injection (GDI) Vehicle stringent recently, a lot of studies have been made on the emission characteristics of PM and PN. In this study, PM and PN emission characteristics were compared to GDI and Multi Port Injection (MPI) Vehicles using the Condensation Particle Counter (CPC) measurement equipment. And driving mode is divided into normal driving mode (CVS-75, NEDC, NIER 6, NIER 9) and a constant speed driving mode (10 km/h, 35 km/h, 80 km/h, 110 km/h) to evaluate the characteristics in the various operating conditions. In the results, most of the driving mode, PM and PN were emitted from GDI Vehicle more than MPI Vehicle. However, in the constant speed mode of 110 km/h, PM and PN from MPI Vehicle were also a lot of emission. It is determined to cause a difficulty in the fuel injection control of the MPI Vehicle.