• 제목/요약/키워드: CUTTING

검색결과 7,438건 처리시간 0.033초

전기분해를 이용한 난삭재의 다이아몬드 미세가공 (Diamond micro-cutting of the difficult -to -cut materials using Electrolysis)

  • 손성민;손민기;임한석;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

고속 탭핑에서의 절삭 특성 해석 (Analysis of Cutting Characteristics in High Speed Tapping)

  • 강지웅;김용규;이돈진;김선호;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2000
  • Productivty of tapping has been increasing through the tcchnological advances in synchronization between spindle rotation and feed motion even in the high spindle speed. However, not much researches have been conducted about tapping process because its complicate cutting mechanism. In order ta investigate the characteristics of the tapping process, this paper concentrates on the analysis of curting torque behavior during one cycle of lapping. As one completc thread is performed through the whole chamfer ercuttlng, cutting torque increases highly in chamfer cutting, but smaothly in full thread cutting Functioning of the threads guide. Cutting torque in backward cutting is smaller than in Sorwerd cutting due to only friction farce in against between the tool and workpiece. And torque behavior of a periodic Sine ripple-mark was identified during one revolution of a tap.

  • PDF

정면밀링커터의 최적설계에 대한 연구(1) -절삭력 중심으로- (A Study on Optimal Design of Face Milling Cutter Geometry(I) -With Respect to Cutting Force-)

  • 김정현;김희술
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2211-2224
    • /
    • 1994
  • On face milling operation a new optimal cutter, which can minimize the resultant cutting forces, was designed from the cutting force model. Cutting experiments were carried out and the cutting forces of the new and conventional cutters were analyed in time and frequency domains. The resultant cutting forces were used as the objective function and cutter angles as the variables. A new optimal cutter design model which can minimize the resultant cutting forces under the constraints of variables was developed and its usefulness was proven. The cutting forces in feed direction of the newly designed cutter are reduced in comparison with those from the conventional cutter. The magnitudes of an insert frequency component of cutting force from the newly designed cutter are reduced than those from conventional cutter and the fluctuations of cutting force are also reduced.

신경망과 실험계획법을 이용한 절삭력 예측 (Prediction of Cutting Force using Neural Network and Design of Experiments)

  • 이영문;최봉환;송태성;김선일;이동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

고속 이송 방식 Laser Cutting M/C의 절단성 평가에 관한 연구 (A Study on Cutting Characteristics Evaluation of High Speed Feeing Type Laser Cutting M/C)

  • 이춘만;임상헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1820-1823
    • /
    • 2003
  • A high speed feeding type laser cutting M/C is developed for precise cutting of sheet metal. This paper has been carried out to obtain cutting characteristics and optimal cutting conditions of the developed high speed feeding type laser cutting M/C by a design of experiments. Cutting speed. laser power. laser duty and gas pressure are control factors for the surface roughness. The major factors affecting the surface roughness and the optimum cutting conditions are studied with minimum experiments using Taguchi method.

  • PDF

고속 파이프 절단기의 절단 조건 선정에 관한 연구 (A Study on the Selection of Cutting Conditions in High Speed Pipe Cutting Machine)

  • 안성환;신상훈;이춘만
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.144-149
    • /
    • 2008
  • This study presents the selection of cutting conditions in high speed pipe cutting machine for the better quality. A high speed pipe cutting machine which uses a rotary knife can make good quality products in short time. But, the machine is much sensitive by cutting conditions because of the complicated mechanism. In this reason, many experiments for cutting condition selection are necessary to improve quality of production. This study carried out cutting experiments with the three factors that are cutting RPM, cutting force and pooling force. 2-dimensional profile measuring instrument is used to measure which is represented by ${\Delta}h$, a sum of burr and collapse height. The effects of factors are analyzed by using MINITAB, the commercial software.

엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용 (Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

밀링가공에서의 주축 변위 측정을 통한 절삭력 예측 (CUTTING FORCE PREDICTION USING SPINDLE DISPLACEMENT IN MILLING)

  • 장훈근;장동영;한동철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.485-489
    • /
    • 2004
  • Cutting force is important to understand cutting process in milling. To measure cutting force, tool dynamometer is widely used but it is hard to apply in workshop condition. Cutting force measurement which doesn't affect cutting process is needed. Using relations between cutting force and spindle displacement, cutting force can be predicted. Cylindrical capacitive sensor was used to measure spindle displacement during cutting. And signals from tool dynamometer collected to compare with spindle displacement. The result shows spindle displacement has a linear relation with cutting force. Using this result, a simple method to predict cutting force could be applied at workshop condition.

  • PDF

티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구 (A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

최적 절삭속도및 피이드 선정 전문가 시스템 (Expert System for optimal cutting speed and feed rate selection)

  • 이건범;김연민
    • 산업공학
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 1996
  • In this study, expert system for the selection of the optimal cutting speed and feed rate was developed using NEXPERT system shell. The NC system has been usually used inefficiently because the input command, which contains cutting speed, feed-rate and the depth of cut, is fixed value which depends on principally operator's experience and machining handbooks providing a guideline for applicable ranges. On the other hand, the optimal cutting conditions vary with time, and depend on tool and machine characteristics, work materials, and cost factor and so on. In this study, if cutting factors, such as, cutting method, material type, cutting depth, and tool nose radius are specified, our expert system gets the information about the standard cutting speed form the cutting speed database, and provides optimum feed rate for these cutting conditions. This cutting speed database can be updated by inputting valid cutting speed which is obtained form the practices.

  • PDF