• Title/Summary/Keyword: CTGF

Search Result 38, Processing Time 0.024 seconds

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Emerging Mechanisms of Cyr61/CTGF/NOV Secretion in the Nervous System

  • Yang, Hayoung;Park, Young-Jun;Shim, Sungbo
    • Biomedical Science Letters
    • /
    • v.28 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • The Cyr61/CTGF/NOV (CCN) family is dynamically expressed in various tissues, including the nervous system, from the prenatal period to adulthood. However, major studies have been conducted only in limited fields, such as the cardiovascular and muscular systems, skeletal development, and cancer. In addition, although the CCN family is a secretory protein, very few studies have described its mechanism of secretion. Recently, it has been suggested that overexpression of CCN3 or intracellular accumulation due to problems in the secretory pathway can inhibit neuronal axonal growth. In this review, we have briefly summarized the structure and characteristics of the CCN family and its related diseases, with particular emphasis on the secretory mechanism and modifiers of the CCN family, newly identified in the nervous system.

Inhibitory effect of Cinnamomi Cortex extract on motility of prostate cancer cells through reducing YAP activity (육계의 전립선암세포에서 YAP 활성 억제를 통한 전이 저해 효능 연구)

  • Jung, Hyo Won;Kim, Ok-Hyeon;Wang, Tsu Yu;Kim, Seong Eun;Park, Yong-Ki;Lee, Hyun Jung
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.55-61
    • /
    • 2019
  • Objectives : Recently, natural bioactive components catch a major attention for their potent anticarcinogenic activity. In this study, the inhibitory effect of Cinnamomi Cortex (CC) was examined in PC3 prostate cancer cells. Methods : The toxicity of CC extract was evaluated with cell viability and cell morphology. The activity of Yes associated protein (YAP) was tested with qRT-PCR for the target gene expression such as CTGF and AMOTL2. Western blotting was performed for the evaluation of phospho-YAP level. For cell motility analysis, cellular motility was imaged by live imaging system for 6 hr. Successive images were used for the generation of movie file. Using this movie file, cellular migration was manually tracked and analyzed using time-lapse microscope and Fiji software. Results : Cytotoxicity of CC extract was not detected at $500{\mu}g/m{\ell}$ or below concentration. Although $500{\mu}g/m{\ell}$ of CC extract reduced CTGF and AMOTL2 gene expression as YAP target genes, it was not statistically significant (CTGF expression P=0.0605, AMOTL2 expression P=0.4478). However, phosphorylated YAP was highly enhanced by CC extract treatment, when normalized with total YAP protein expression, suggesting YAP activation was inhibited. Finally prostate cancer cell motility was markedly reduced by $500{\mu}g/m{\ell}$ of CC extract. Conclusions : CC extract suppresses cancer cell motility and migration ability through inhibiting YAP activation without prostate cancer cell death, suggesting that this herb might be effective therapeutic drug for prostate cancer metastasis.

DISPLACEMENT OF MAXILLARY LATERAL INCISOR CAUSED BY IDIOPATHIC GINGIVAL FIBROMATOSIS (특발성 치은 섬유종증에 의한 상악 측절치의 변위)

  • Jung, Ji-Sook;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo;Lee, Suk-Keun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.296-302
    • /
    • 2011
  • Idiopathic gingival fibromatosisrarely occurs, but frequently recurred after surgical removal. It usually occurs in generalized symmetrical pattern but sometimes in localized unilateral pattern. The localized pattern usually affects the maxillary molar and tuberosity area. This disease usually causes tooth migration, malocclusion, and problems in eating, speech, and esthetics. A boy showed dense gingival fibromatosis localized at primary maxillary right lateral incisor area at the age of 5 years, and his maxillary right lateral incisor become severely displaced at the age of 9 years. He had no medical and hereditary factors relevant to the gingival fibromatosis. However, the dense fibrous tissue was dominant in his labial gingiva of maxillary right incisors. In order to realign the displaced incisors by orthodontic treatment, the dense fibrous tissue covered the defect space between the central incisor and the displaced lateral incisor was surgically removed. The removed specimen was examined by simple immunohistochemical(IHC) array method. IHC array showed increased expression of CTGF, HSP-70, MMP-1, PCNA, CMG2, and TNF-${\alpha}$ in keratinocytes, fibroblasts, endothelial cells, and macrophages of gingival fibromatosis tissue. Therefore, it was suggested that the gingival fibromatosis be caused by the concomitant overexpression of CTGF, HSP-70, MMP-1, PCNA, CMG2, and TNF-${\alpha}$, and resulted in the fibroepithelial proliferation and the inflammatory reaction of gingival tissue.

Dietary nobiletin suppresses TGF-β1- Src-caveolin-1 dependent signaling involved with high glucose-induced renal mesangial matrix accumulation (고혈당으로 유도된 신장 mesangial cell 에서 nobiletin의 matrix accumulation 과 TGF-β1-Src-caveolin-1 signaling에 의한 사구체 경화증 억제효과)

  • Kim, Dong Yeon;Kang, Young-Hee;Kang, Min-Kyung
    • Journal of Nutrition and Health
    • /
    • v.53 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Purpose: Diabetic nephropathy is one of the most important diabetic complications prompted by chronic hyperglycemia, characterized by glomerulosclerosis, tubular fibrosis, and it eventually causes kidney failure. Nobiletin is a polymethoxyflavone present in tangerine and other citrus peels, and has anti-cancer and anti-inflammatory effects. This study investigated the effects of nobiletin on glomerular fibrosis through inhibition of the transforming growth factor (TGF)-β1-Src-caveolin-1 pathway. Methods: Human renal mesangial cells (HRMC) were incubated in media containing 33 mM glucose with or without 1-20 uM nobiletin for 3 day. The cellular expression levels of fibrogenic collagen IV, fibronectin, connective tissue growth factor (CTGF), TGF-β1, Src and caveolin-1 were all examined. In addition, TGF-β1, Src and caveolin-1 proteins were screened to reveal the relationship among TGF-β1-Src-caveolin-1 signaling in glomerular fibrosis. Results: High glucose promoted the production of collagen IV, fibronectin and CTGF in HRMC, which was inhibited in a dose dependent manner by 1-20 uM nobiletin. The Western blot data showed that high glucose elevated the expression of TGF-β1, Src, caveolin-1 and Rho GTPase. When nobiletin was treated to the HRMC exposed to high glucose, the expression of TGF-β1-Src-caveolin-1 was dampened. Finally, TGF-β1-Src-caveolin-1 signaling pathway was activated in high glucose-exposed HRMC, and such activation was encumbered by nobiletin. Conclusion: These result demonstrated that nobiletin blunted high glucose-induced extracellular matrix accumulation via inhibition of the TGF-β1-Src-caveolin-1 related intracellular signaling pathway. Nobiletin may be a potent renoprotective agent to counteract diabetes-associated glomerular fibrosis that leads to kidney failure.

Effects of Free Anthraquinones Extract from the Rhubarb on Cell Proliferation and Accumulation of Extracellular Matrix in High Glucose Cultured-Mesangial Cells

  • Wang, Jianyun;Fang, Hui;Dong, Bingzheng;Wang, Dongdong;Li, Yan;Chen, Xiao;Chen, Lijuan;Wei, Tong;Wei, Qunli
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.485-489
    • /
    • 2015
  • Diabetic nephropathy (DN) is the leading cause of end-stage failure of the kidney, but the efficacy of currently available strategies for the prevention of DN remains unsatisfactory. In this study, we investigated the effects of free anthraquinones (FARs) extract, which was extracted from the rhubarb and purified by macroporous resin DM130 with gradient mixtures of ethanol/water as the lelution solvents, in high glucose-cultured glomerular mesangial cells (MCs). The cell proliferation was determined by CCK-8 assay, the levels of TGF-${\beta}1$, CTGF, ColIV and FN proteins in the supernatant of MCs were measured by ELISA assays, and the mRNA levels of these four genes were detected by RT-PCR. The results showed that the increased proliferation of MCs, the mRNA levels and protein expression of TGF-${\beta}1$, CTGF, ColIV and FN induced by high glucose were inhibited after the treatment with the FARs extract. This indicated that FARs extract could inhibit cell proliferation and the expression of main extracellular matrix induced by high glucose in MCs. The FARs extract exhibited potential values for prophylaxis and therapy of DN.

Effects of Injinchunggan-tang (Yinchenqinggan-tang) on $TGF-{\beta}1-Mediated$ Hepatic Fibrosis (인진청간탕이 $TGF-{\beta}1$ 매개성 간섬유화에 미치는 영향)

  • 심재옥;김영철;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • Objectives : The aim of this study was to characterize the effect of Injinchunggan-tang on $TGF-{\beta}1-induced$ hepatic fibrosis. Methods : mRNA and protein expression levels of $TGF-{\beta}1$ in Injinchunggan-tang-treated HepG2 cells were compared to untreated cells using quantitative RT-PCR and ELISA assay, respectively. mRNA expression levels of the TGF-1 pathway genes (TR-1, TR-II, Smad2, Smad3, Smad4, and PAI-1) and fibrosis-associated genes (CTGF, fibronectin, and collagen type 1) were evaluated by quantitative RT-PCR. The effect of Injinchunggan-tang on cell proliferation of T3891 human fibroblast was evaluated using [$^3H$]thymidine incorporation assay. Results : Expression of $TGF-{\beta}1$ mRNA and protein was inhibited by Injinchunggan-tang in a dose- and time-dependent manner. Whereas $TGF-{\beta}1-mediated$ induction of PAI-1 was suppressed by Injinchunggan-tang, expression of the $TGF-{\beta}1$ pathway genes such as TR-1, TR-II, Smad2, Smad3, and Smad4 was not affected by Injinchunggan-tang treatment. Injinchunggan-tang was found to inhibit $TGF-{\beta}1-induced$ cell proliferation of T3891 human fibroblast, and also abrogated $TGF-{\beta}1-mediated$ transcriptional up-regulation of CTGF, fibronectin, and collagen type I. Conclusions : This study strongly suggests that the liver cirrhosis-suppressive activity of Injinchunggan-tang may be derived at least in part from its inhibitory effect on $TGF-{\beta}1$ functions, such as blockade of $TGF-{\beta}1$ stimulation of fibroblast cell proliferation and fibrosis-related gene expression as well as expression of $TGF-{\beta}1$ itself.

  • PDF

Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats

  • Zhang, Qianrui;Chen, Kang;Wu, Tao;Song, Hongping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride ($CCl_4$)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a $CCl_4$ group, a $CCl_4+STM$ 100 mg/kg group, and a $CCl_4+STM$ 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% $CCl_4$ twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of $TGF-{\beta}1$, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the $CCl_4$ group. The levels of Bax and cleaved caspase-3 proteins, and $TGF-{\beta}1$, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the $CCl_4$ group. In addition, STM markedly abrogated the repression of Bcl-2 by $CCl_4$. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated $CCl_4$-induced hepatocyte apoptosis in rats.

Prognostic biomarkers and molecular pathways mediating Helicobacter pylori-induced gastric cancer: a network-biology approach

  • Farideh Kamarehei;Massoud Saidijam;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.19
    • /
    • 2023
  • Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori-induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori-induced cancer compared with the H. pylori-positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori-induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori-induced GC. However, experimental validation is necessary in the future.

Role of the CCN protein family in cancer

  • Kim, Hyungjoo;Son, Seogho;Shin, Incheol
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.486-492
    • /
    • 2018
  • The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets.