Acknowledgement
This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3C7A1046154, 2020R1A6A1A06046235, 2022R1I1A1A01068448) and the KRIBB Research Initiative Program (KGM 5322214).
References
- Baguma-Nibasheka M, Kablar B. Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn. 2008. 237: 485-493. https://doi.org/10.1002/dvdy.21433
- Baker N, Sharpe P, Culley K, Otero M, Bevan D, Newham P, et al. Dual regulation of metalloproteinase expression in chondrocytes by Wnt-1-inducible signaling pathway protein 3/CCN6. Arthritis Rheum. 2012. 64: 2289-2299. https://doi.org/10.1002/art.34411
- Bohr W, Kupper M, Hoffmann K, Weiskirchen R. Recombinant expression, purification, and functional characterisation of connective tissue growth factor and nephroblastoma-overexpressed protein. PLoS One. 2010. 5: e16000. https://doi.org/10.1371/journal.pone.0016000
- Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev. 1999. 20: 189-206. https://doi.org/10.1210/er.20.2.189
- Chamberlain LH, Shipston MJ. The physiology of protein Sacylation. Physiol Rev. 2015. 95: 341-376. https://doi.org/10.1152/physrev.00032.2014
- Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science. 2001. 293: 2080-2084. https://doi.org/10.1126/science.1064437
- Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009. 41: 771-783. https://doi.org/10.1016/j.biocel.2008.07.025
- French DM, Kaul RJ, D'souza AL, Crowley CW, Bao M, Frantz GD, et al. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. The American Journal of Pathology. 2004. 165: 855-867. https://doi.org/10.1016/S0002-9440(10)63348-2
- Gao X, Hannoush RN. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol. 2014. 10: 61-68. https://doi.org/10.1038/nchembio.1392
- Globa AK, Bamji SX. Protein palmitoylation in the development and plasticity of neuronal connections. Curr Opin Neurobiol. 2017. 45: 210-220. https://doi.org/10.1016/j.conb.2017.02.016
- Gray MR, Malmquist JA, Sullivan M, Blea M, Castellot JJ, Jr. CCN5 Expression in mammals. II. Adult rodent tissues. J Cell Commun Signal. 2007. 1: 145-158. https://doi.org/10.1007/s12079-007-0013-z
- Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci. 2011. 36: 245-253. https://doi.org/10.1016/j.tibs.2011.01.003
- Hall-Glenn F, Aivazi A, Akopyan L, Ong JR, Baxter RR, Benya PD, et al. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress. J Cell Commun Signal. 2013. 7: 219-230. https://doi.org/10.1007/s12079-013-0201-y
- Hall-Glenn F, De Young RA, Huang BL, van Handel B, Hofmann JJ, Chen TT, et al. CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One. 2012. 7: e30562. https://doi.org/10.1371/journal.pone.0030562
- Heath E, Tahri D, Andermarcher E, Schofield P, Fleming S, Boulter CA. Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC Dev Biol. 2008. 8: 18. https://doi.org/10.1186/1471-213X-8-18
- Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci. 2008. 33: 461-473. https://doi.org/10.1016/j.tibs.2008.07.006
- Ishizawa Y, Niwa Y, Suzuki T, Kawahara R, Dohmae N, Simizu S. Identification and characterization of collagen-like glycosylation and hydroxylation of CCN1. Glycobiology. 2019. 29: 696-704. https://doi.org/10.1093/glycob/cwz052
- Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003. 130: 2779-2791. https://doi.org/10.1242/dev.00505
- Jones JA, Gray MR, Oliveira BE, Koch M, Castellot JJ, Jr. CCN5 expression in mammals: I. Embryonic and fetal tissues of mouse and human. J Cell Commun Signal. 2007. 1: 127-143. https://doi.org/10.1007/s12079-007-0012-0
- Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011. 10: 945-963. https://doi.org/10.1038/nrd3599
- Katoh M, Katoh M. Comparative genomics on Norrie disease gene. International Journal of Molecular Medicine. 2005. 15: 885-889.
- Kim H, Son S, Shin I. Role of the CCN protein family in cancer. BMB Reports. 2018a. 51: 486. https://doi.org/10.5483/BMBRep.2018.51.10.192
- Kim Y, Yang H, Min JK, Park YJ, Jeong SH, Jang SW, et al. CCN3 secretion is regulated by palmitoylation via ZDHHC22. Biochem Biophys Res Commun. 2018b. 495: 2573-2578. https://doi.org/10.1016/j.bbrc.2017.12.128
- Kireeva ML, Latinkic BV, Kolesnikova TV, Chen CC, Yang GP, Abler AS, et al. Cyr61 and Fisp12 are both ECM-associated signaling molecules: activities, metabolism, and localization during development. Exp Cell Res. 1997. 233: 63-77. https://doi.org/10.1006/excr.1997.3548
- Komekado H, Yamamoto H, Chiba T, Kikuchi A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells. 2007. 12: 521-534. https://doi.org/10.1111/j.1365-2443.2007.01068.x
- Krupska I, Bruford EA, Chaqour B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Human Genomics. 2015. 9: 1-13. https://doi.org/10.1186/s40246-014-0023-x
- Lafont J, Thibout H, Dubois C, Laurent M, Martinerie C. NOV/CCN3 induces adhesion of muscle skeletal cells and cooperates with FGF2 and IGF-1 to promote proliferation and survival. Cell Communication & Adhesion. 2005. 12: 41-57. https://doi.org/10.1080/15419060500383069
- Lake AC, Castellot JJ. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells. Cell Communication and Signaling. 2003. 1: 1-13. https://doi.org/10.1186/1478-811X-1-1
- Latinkic BV, Mo FE, Greenspan JA, Copeland NG, Gilbert DJ, Jenkins NA, et al. Promoter function of the angiogenic inducer Cyr61gene in transgenic mice: tissue specificity, inducibility during wound healing, and role of the serum response element. Endocrinology. 2001. 142: 2549-2557. https://doi.org/10.1210/en.142.6.2549
- Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006. 119: 4803-4810. https://doi.org/10.1242/jcs.03270
- Leask A, Parapuram SK, Shi-Wen X, Abraham DJ. Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal. 2009. 3: 89-94. https://doi.org/10.1007/s12079-009-0037-7
- Li Y, Hu J, Hofer K, Wong AM, Cooper JD, Birnbaum SG, et al. DHHC5 interacts with PDZ domain 3 of post-synaptic density95 (PSD-95) protein and plays a role in learning and memory. J Biol Chem. 2010. 285: 13022-13031. https://doi.org/10.1074/jbc.M109.079426
- Mason HR, Lake AC, Wubben JE, Nowak RA, Castellot JJ, Jr. The growth arrest-specific gene CCN5 is deficient in human leiomyomas and inhibits the proliferation and motility of cultured human uterine smooth muscle cells. Mol Hum Reprod. 2004. 10: 181-187. https://doi.org/10.1093/molehr/gah028
- Mikels AJ, Nusse R. Wnts as ligands: processing, secretion and reception. Oncogene. 2006. 25: 7461-7468. https://doi.org/10.1038/sj.onc.1210053
- Mo FE, Lau LF. The matricellular protein CCN1 is essential for cardiac development. Circ Res. 2006. 99: 961-969. https://doi.org/10.1161/01.RES.0000248426.35019.89
- Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol. 2002. 22: 8709-8720. https://doi.org/10.1128/MCB.22.24.8709-8720.2002
- Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008. 11: 1302-1310. https://doi.org/10.1038/nn.2204
- Myers RB, Rwayitare K, Richey L, Lem J, Castellot JJ. CCN5 Expression in mammals. III. Early embryonic mouse development. Journal of Cell Communication and Signaling. 2012. 6: 217-223. https://doi.org/10.1007/s12079-012-0176-0
- Niwa Y, Suzuki T, Dohmae N, Simizu S. O-Fucosylation of CCN1 is required for its secretion. FEBS Lett. 2015. 589: 3287-3293. https://doi.org/10.1016/j.febslet.2015.09.012
- Partridge EA, Hanna BD, Panitch HB, Rintoul NE, Peranteau WH, Flake AW, et al. Pulmonary hypertension in giant omphalocele infants. J Pediatr Surg. 2014. 49: 1767-1770. https://doi.org/10.1016/j.jpedsurg.2014.09.016
- Perbal B. "Knock once for yes, twice for no". J Cell Commun Signal. 2015. 9: 15-18. https://doi.org/10.1007/s12079-015-0273-y
- Perrot A, Schmitt KR, Roth EM, Stiller B, Posch MG, Browne EN, et al. CCN1 mutation is associated with atrial septal defect. Pediatr Cardiol. 2015. 36: 295-299. https://doi.org/10.1007/s00246-014-1001-8
- Putilina T, Wong P, Gentleman S. The DHHC domain: a new highly conserved cysteine-rich motif. Mol Cell Biochem. 1999. 195: 219-226. https://doi.org/10.1023/A:1006932522197
- Ray G, Banerjee S, Saxena NK, Campbell DR, Van Veldhuizen P, Banerjee SK. Stimulation of MCF-7 tumor progression in athymic nude mice by 17beta-estradiol induces WISP-2/CCN5 expression in xenografts: a novel signaling molecule in hormonal carcinogenesis. Oncol Rep. 2005. 13: 445-448.
- Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chemical Biology. 2006. 2: 584-590. https://doi.org/10.1038/nchembio834
- Resh MD. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: roles in signalling and disease. Open Biol. 2021. 11: 200414. https://doi.org/10.1098/rsob.200414
- Saleem AN, Chen YH, Baek HJ, Hsiao YW, Huang HW, Kao HJ, et al. Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase. PLoS Genet. 2010. 6: e1000985. https://doi.org/10.1371/journal.pgen.1000985
- Shimoyama T, Hiraoka SI, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, et al. CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010. 30: 675-682. https://doi.org/10.1161/ATVBAHA.110.203356
- Singaraja RR, Huang K, Sanders SS, Milnerwood AJ, Hines R, Lerch JP, et al. Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Human Molecular Genetics. 2011. 20: 3899-3909. https://doi.org/10.1093/hmg/ddr308
- Su BY, Cai WQ, Zhang CG, Martinez V, Lombet A, Perbal B. The expression of ccn3 (nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol Pathol. 2001. 54: 184-191. https://doi.org/10.1136/mp.54.3.184
- Tanaka S, Sugimachi K, Saeki H, Kinoshita J, Ohga T, Shimada M, et al. A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene. 2001. 20: 5525-5532. https://doi.org/10.1038/sj/onc/1204723
- Ueberham U, Ueberham E, Gruschka H, Arendt T. Connective tissue growth factor in Alzheimer's disease. Neuroscience. 2003. 116: 1-6. https://doi.org/10.1016/S0306-4522(02)00670-X
- Vasudevan D, Haltiwanger RS. Novel roles for O-linked glycans in protein folding. Glycoconj J. 2014. 31: 417-426. https://doi.org/10.1007/s10719-014-9556-4
- Wang S, Chong ZZ, Shang YC, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr Neurovasc Res. 2012. 9: 20-31. https://doi.org/10.2174/156720212799297137
- Xu J, Smock SL, Safadi FF, Rosenzweig AB, Odgren PR, Marks SC, Jr., et al. Cloning the full-length cDNA for rat connective tissue growth factor: implications for skeletal development. J Cell Biochem. 2000. 77: 103-115.
- Yang W, Wagener J, Wolf N, Schmidt M, Kimmig R, Winterhager E, et al. Impact of CCN3 (NOV) glycosylation on migration/invasion properties and cell growth of the choriocarcinoma cell line Jeg3. Hum Reprod. 2011. 26: 2850-2860. https://doi.org/10.1093/humrep/der239
- Yu Y, Hu M, Xing X, Li F, Song Y, Luo Y, et al. Identification of a mutation in the WISP3 gene in three unrelated families with progressive pseudorheumatoid dysplasia. Mol Med Rep. 2015. 12: 419-425. https://doi.org/10.3892/mmr.2015.3430
- Zhao Z, Ho L, Wang J, Qin W, Festa ED, Mobbs C, et al. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance-associated promotion of Alzheimer's disease beta-amyloid neuropathology. Faseb J. 2005. 19: 2081-2082. https://doi.org/10.1096/fj.05-4359fje