• Title/Summary/Keyword: CTAC with MR coil

Search Result 1, Processing Time 0.015 seconds

The Effects of a MR Torso Coil on CT Attenuation Correction for PET (PET/CT 검사에 있어서 MR Torso Coil의 CT 감쇄보정에 대한 영향 평가)

  • Lee, Seung Jae;Bahn, Young Kag;Oh, Shin Hyun;Gang, Cheon-Gu;Lim, Han Sang;Kim, Jae Sam;Lee, Chang Ho;Seo, Soo-Hyun;Park, Yong Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2012
  • Purpose : Combined MR/PET scanners that use the MRI for PET AC face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. To make up for the weak point of MR attenuation correction, Three Modality System (PET/CT +MR) were used in Severance hospital. The goal of this work was to investigate the effects of MR Torso Coil on CT attenuation correction for PET. Materials and Methods : PET artifacts were evaluated when the MR Torso Coil was present of CTAC data with changing various kV and mA in uniformity water phantom and 1994 NEMA cylinderical phantom. They evaluated and compared the following two scenarios: (1) The uniform cylinder phantom and the MR Torso Coil scanned and reconstructed using CT-AC; (2) 1994 NEMA cylinderical phantom and the MR Torso Coil scanned and reconstructed using CT-AC. Results : Streak artifacts were present in CT images containing the MR Torso Coil due to metal components. These artifacts persisted after the CT images were converted for PET-AC. CT scans tended to over-estimate the linear attenuation coefficient when the kV and mA is increasing of the metal components when using conventional methods for converting from CT number. Conclusion : The presence of MR coils during PET/CT scanning can cause subtle artifacts and potentially important quantification errors. Alternative CT techniques that mitigate artifacts should be used to improve AC accuracy. When possible, removing segments of an MR coil prior to the PET/CT exam is recommended. Further, MR coils could be redesigned to reduce artifacts by rearranging placement of the most attenuating materials.

  • PDF