• Title/Summary/Keyword: CT values

Search Result 693, Processing Time 0.023 seconds

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation (이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성)

  • Sewon Lim;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.663-670
    • /
    • 2023
  • In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.

Imaging Predictors of Survival in Patients with Single Small Hepatocellular Carcinoma Treated with Transarterial Chemoembolization

  • Chan Park;Jin Hyoung Kim;Pyeong Hwa Kim;So Yeon Kim;Dong Il Gwon;Hee Ho Chu;Minho Park;Joonho Hur;Jin Young Kim;Dong Joon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.213-224
    • /
    • 2021
  • Objective: Clinical outcomes of patients who undergo transarterial chemoembolization (TACE) for single small hepatocellular carcinoma (HCC) are not consistent, and may differ based on certain imaging findings. This retrospective study was aimed at determining the efficacy of pre-TACE CT or MR imaging findings in predicting survival outcomes in patients with small HCC upon being treated with TACE. Besides, the study proposed to build a risk prediction model for these patients. Materials and Methods: Altogether, 750 patients with functionally good hepatic reserve who received TACE as the first-line treatment for single small HCC between 2004 and 2014 were included in the study. These patients were randomly assigned into training (n = 525) and validation (n = 225) sets. Results: According to the results of a multivariable Cox analysis, three pre-TACE imaging findings (tumor margin, tumor location, enhancement pattern) and two clinical factors (age, serum albumin level) were selected and scored to create predictive models for overall, local tumor progression (LTP)-free, and progression-free survival in the training set. The median overall survival time in the validation set were 137.5 months, 76.1 months, and 44.0 months for low-, intermediate-, and high-risk groups, respectively (p < 0.001). Time-dependent receiver operating characteristic curves of the predictive models for overall, LTP-free, and progression-free survival applied to the validation cohort showed acceptable areas under the curve values (0.734, 0.802, and 0.775 for overall survival; 0.738, 0.789, and 0.791 for LTP-free survival; and 0.671, 0.733, and 0.694 for progression-free survival at 3, 5, and 10 years, respectively). Conclusion: Pre-TACE CT or MR imaging findings could predict survival outcomes in patients with small HCC upon treatment with TACE. Our predictive models including three imaging predictors could be helpful in prognostication, identification, and selection of suitable candidates for TACE in patients with single small HCC.

Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction

  • Chuluunbaatar Otgonbaatar;Jae-Kyun Ryu;Jaemin Shin;Ji Young Woo;Jung Wook Seo;Hackjoon Shim;Dae Hyun Hwang
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1044-1054
    • /
    • 2022
  • Objective: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. Materials and Methods: CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. Results: DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. Conclusion: DLR reconstruction provided better images than FBP and hybrid IR reconstruction.

Trans-Aortic Flow Turbulence and Aortic Valve Inflammation: A Pilot Study Using Blood Speckle Imaging and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography in Patients With Moderate Aortic Stenosis

  • Soyoon Park;Woo-Baek Chung;Joo Hyun O;Kwan Yong Lee;Mi-Hyang Jung;Hae-Ok Jung;Kiyuk Chang;Ho-Joong Youn
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.145-149
    • /
    • 2023
  • BACKGROUND: 18F-sodium fluoride positron emission tomography/computed tomography (18F-NaF PET/CT) has been proven to be useful in identification of microcalcifications, which are stimulated by inflammation. Blood speckle imaging (BSI) is a new imaging technology used for tracking the flow of blood cells using transesophageal echocardiography (TEE). We evaluated the relationship between turbulent flow identified by BSI and inflammatory activity of the aortic valve (AV) as indicated by the 18F-NaF uptake index in moderate aortic stenosis (AS) patients. METHODS: This study enrolled 18 moderate AS patients diagnosed within the past 6 months. BSI within the aortic root was acquired using long-axis view TEE. The duration of laminar flow and the turbulent flow area ratio were calculated by BSI to demonstrate the degree of turbulence. The maximum and mean standardized uptake values (SUVmax, SUVmean) and the total microcalcification burden (TMB) as measured by 18F-NaF PET/CT were used to demonstrate the degree of inflammatory activity in the AV region. RESULTS: The mean SUVmean, SUVmax, and TMB were 1.90 ± 0.79, 2.60 ± 0.98, and 4.20 ± 2.18 mL, respectively. The mean laminar flow period and the turbulent area ratio were 116.1 ± 61.5 msec and 0.48 ± 0.32. The correlation between SUVmax and turbulent flow area ratio showed the most positive and statistically significant correlation, with a Pearson's correlation coefficient (R2) of 0.658 and a p-value of 0.014. CONCLUSIONS: The high degree of trans-aortic turbulence measured by BSI was correlated with severe AV inflammation.

Preoperative estimation of hemi-liver volume using standard liver volume and portal vein diameter ratio in living donor liver transplantation

  • Sung-Min Kim;Amro Hasan Ageel;Shin Hwang;Dong-Hwan Jung;Tae-Yong Ha;Gi-Won Song;Gil-Chun Park;Chul-Soo Ahn;Deok-Bog Moon
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.4
    • /
    • pp.308-312
    • /
    • 2022
  • Backgrounds/Aims: Although body surface area (BSA)-based standard liver volume (SLV) formulae have been used for living donor liver transplantation and hepatic resection, hemi-liver volume (HLV) is needed more frequently. HLV can be assessed using right or left portal vein diameter (RPVD or LPVD). The aim of this study was to validate the reliability of using portal vein diameter ratio (PVDR) for assessing HLV in living liver donors. Methods: This study included 92 living liver donors (59 males and 33 females) who underwent surgery between January 2020 and December 2020. Computed tomography (CT) images were used for measurements. Results: Mean age of donors was 35.5 ± 7.2 years. CT volumetry-measured total liver volume (TLV), right HLV, left HLV, and percentage of right HLV in TLV were 1,442.9 ± 314.2 mL, 931.5 ± 206.4 mL, 551.4 ± 126.5 mL, and 64.6% ± 3.6%, respectively. RPVD, LPVD, and main portal vein diameter were 12.2 ± 1.5 mm, 10.0 ± 1.3 mm, and 15.3 ± 1.7 mm, respectively (corresponding square values: 149.9 ± 36.9 mm2, 101.5 ± 25.2 mm2, and 237.2 ± 52.2 mm2, respectively). The sum of RPVD2 and LPVD2 was 251.1 ± 56.9 mm2. BSA-based SLV was 1,279.5 ± 188.7 mL (error rate: 9.1% ± 14.4%). SLV formula- and PVDR-based right HLV was 760.0 ± 130.7 mL (error rate: 16.2% ± 13.3%). Conclusions: Combining BSA-based SLV and PVDR appears to be a simple method to predict right or left HLV in living donors or split liver transplantation.

The Effect of Using Two Different Type of Dose Calibrators on In Vivo Standard Uptake Value of FDG PET (FDG 사용 시 Dose Calibrator에 따른 SUV에 미치는 영향)

  • Park, Young-Jae;Bang, Seong-Ae;Lee, Seung-Min;Kim, Sang-Un;Ko, Gil-Man;Lee, Kyung-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.115-121
    • /
    • 2010
  • Purpose: The purpose of this study is to measure F-18 FDG with two different types of dose calibrator measuring radionuclide and radioactivity and investigate the effect of F-18 FDG on SUV (Standard Uptake Value) in human body. Materials and Methods: Two different dose calibrators used in this study are CRC-15 Dual PET (Capintec) and CRC-15R (Capintec). Inject 1 mL, 2 mL, 3 mL of F-18 FDG into three 2 mL syringes, respectively, and measure initial radioactivity from each dose calibrator. Then measure and record radioactivity at 30 minute interval for 270 minutes. According to the initial radioactivity, linearity between decay factor driven from radioactive decay formula and the values measured by dose calibrator have been analyzed by simple linear regression. Fine linear regression line optimizing values measured with CRC-15 through regression analysis on the basis of the volume of which the measured value is close to the most ideal one in CRC-15 Dual PET. Create ROI on lung, liver, and region part of 50 persons who has taken PET/CT test, applying values from linear regression equation, and find SUV. We have also performed paired t-test to examine statistically significant difference in the radioactivity measured with CRC-15 Dual PET, CRC-15R and its SUV. Results: Regression analysis of radioactivity measured with CRC-15 Dual PET and CRC-15R shows results as follows: in the case 1 mL, the r statistic representing correlation was 0.9999 and linear regression equation was y=1.0345x+0.2601; in 2 mL case, r=0.9999, linear regression equation y=1.0226x+0.1669; in 3 mL case, r=0.9999, linear regression equation y=1.0094x+0.1577. Based on the linear regression equation from each volume, t-test results show significant difference in SUV of ROI in lung, liver, region part in all three case. P-values in each case are as follows: in 1 mL case, lung, liver and region (p<0.0001); in 2 mL case, lung (p<0.002), liver and region (p<0.0001); in 3 mL case, lung (p<0.044), liver and region (p<0.0001). Conclusion: Radioactivity measured with CRC-15 Dual PET, CRC-15R, dose calibrator for F-18 FDG test, do not show difference correlation, while these values infer that SUV has significant differences in the aspect of uptake in human body. Therefore, it is necessary to consider the difference of SUV in human body when using these dose calibrator.

  • PDF