• 제목/요약/키워드: CT simulation

검색결과 367건 처리시간 0.027초

두부 CT검사에서의 노이즈 및 화질분석 (Noise and Image Quality Analysis of Brain CT Examination)

  • 최석윤;임인철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권4호
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study was to find the best protocol for balance of image quality and dose in brain CT scan. Images were acquired using dual-source CT and AAPM water phantom, noise and dose were measured, and effective dose was calculated using computer simulation program ALARA(S/W). In order to determine the ratio of image quality and dose by each protocol, FOM (figure of merits) equation with normalized DLP was presented and the result was calculated. judged that the ratio of image quality and dose was excellent when the FOM maximized. Experimental results showed that protocol No. 21(120 kVp, 10 mm, 1.5 pitch) was the best, the organ with the highest effective dose was the brain(33.61 mGy). Among organs with high radiosensitivity, the thyroid gland was 0.78 mGy and breast 0.05 mGy. In conclusion, the optimal parameters and the organ dose in the protocol were also presented from the experiment, It may be helpful to clinicians who want to know the protocol about the optimum state of image quality and dose.

Visualization of Tooth for Non-Destructive Evaluation from CT Images

  • Gao, Hui;Chae, Oksam
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.207-213
    • /
    • 2009
  • This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

변류기 포화 곤단 알고리즘으로 억제된 모선보호용 비율 전류차동 계전방식 (A Percentage Current Differential Relaying Algorithm for Bus Protection Blocked by a CT Saturation Detection Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권1호
    • /
    • pp.44-49
    • /
    • 2003
  • This paper describes a percentage current differential relaying algorithm for bus protection blocked by a CT saturation detection algorithm. The detection algorithm blocks the output of a current differential relay only if a differential current is caused by CT saturation in the case of an external fault. Moreover, if a current differential relay operates faster than the detection algorithm, the blocking signal is not ignited. On the other hand. if the detection algorithm operates faster than a current differential relay, the output of the relay is blocked. The results of the simulation show that the proposed algorithm can discriminate internal faults from external faults ever when a CT is saturated in both cases. This paper concludes by implementing the algorithm into the TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory The algorithm can not only increase the sensitivity of the current differential relay but Improve the stability of the relay for an external faults.

Generation and Detection of Cranial Landmark

  • Heo, Suwoong;Kang, Jiwoo;Kim, Yong Oock;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose When a surgeon examines the morphology of skull of patient, locations of craniometric landmarks of 3D computed tomography(CT) volume are one of the most important information for surgical purpose. The locations of craniometric landmarks can be found manually by surgeon from the 3D rendered volume or 2D sagittal, axial, and coronal slices which are taken by CT. Since there are many landmarks on the skull, finding these manually is time-consuming, exhaustive, and occasionally inexact. These inefficiencies raise a demand for a automatic localization technique for craniometric landmark points. So in this paper, we propose a novel method through which we can automatically find these landmark points, which are useful for surgical purpose. Materials and Methods At first, we align the experimental data (CT volumes) using Frankfurt Horizontal Plane (FHP) and Mid Sagittal Plane(MSP) which are defined by 3 and 2 cranial landmark points each. The target landmark of our experiment is the anterior nasal spine. Prior to constructing a statistical cubic model which would be used for detecting the location of the landmark from a given CT volume, reference points for the anterior nasal spine were manually chosen by a surgeon from several CT volume sets. The statistical cubic model is constructed by calculating weighted intensity means of these CT sets around the reference points. By finding the location where similarity function (squared difference function) has the minimal value with this model, the location of the landmark can be found from any given CT volume. Results In this paper, we used 5 CT volumes to construct the statistical cubic model. The 20 CT volumes including the volumes, which were used to construct the model, were used for testing. The range of age of subjects is up to 2 years (24 months) old. The found points of each data are almost close to the reference point which were manually chosen by surgeon. Also it has been seen that the similarity function always has the global minimum at the detection point. Conclusion Through the experiment, we have seen the proposed method shows the outstanding performance in searching the landmark point. This algorithm would make surgeons efficiently work with morphological informations of skull. We also expect the potential of our algorithm for searching the anatomic landmarks not only cranial landmarks.

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

PET/CT실에서 사용되는 주사기 차폐체의 산란선 측정 (Scattering Measurement of Syringe Shield Used in PET/CT)

  • 장동근;박철우;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.375-382
    • /
    • 2020
  • PET/CT is a medical equipment that detects 0.511 MeV of gamma rays. The radiation workers are inevitably exposed to ionizing radiation in the process of handling the isotope. Accordingly, PET/CT workers use syringe shields made of lead and tungsten to protect their hands. However, lead and tungsten are known to generate very high scattering particles by interacting with gamma rays. Therefore, in this study, we tried to find out the effect on the scattering particles emitted from the syringe shield. In the experiment, first, the exposure dose to the hand (Rod phantom) was evaluated according to the metal material (lead, tungsten, iron, stainless steel) using Monte Carlo simulation. The exposure dose was compared according to whether or not plastic is attached. Second, the exposure dose of scattering particles was measured using a dosimeter and lead. As a result of the experiment, the shielding rate of plastics using the Monte Carlo simulation showed the largest difference in dose of about 40 % in lead, and the lowest in iron, about 15 %. As a result of the dosimeter test, when the plastic tape was wound on lead, it was found that the reduction rate was about 15 %, 28 %, and 39 % depending on the thickness. Based on the above results, it was found that 0.511 MeV of gamma ray interacts with the shielding tool to emit scattered rays and has a very large effect on radiation exposure. However, it was considered that the scattering particles could be sufficiently removed with plastics with a low atomic number. From now on, when using high-energy radiation, the shielding tool and the skin should not be in direct contact, and should be covered with a material with a low atomic number.

방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰 (Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy)

  • 박령황;김민정;이상규;박광우;전병철;조정희;유병규;이종석
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제34권4호
    • /
    • pp.341-349
    • /
    • 2011
  • 방사선치료를 위한 CT 검사 시 동일 환자에 대하여 3차원영상과, 호흡주기영상을 획득하기 위한 컴퓨터단층촬영에서 환자의 피폭선량을 측정하고자 SOMATON SENSATION OPEN(SIEMENS, GERMANY)을 이용하여 내원환자 중 폐암환자 10명, 간암환자 10명의 CT 검사 시 피폭선량을 측정했다. 환자가 받는 피폭선량은 The volume CT dose index(CTDIvol), Dose Length Product(DLP)를 이용하여 분석하였으며 각각의 장기들이 받는 피폭선량의 실측은 환자의 장기를 대상으로 할 수 없어 Rando 팬텀을 이용 흉부검사 시 폐와 심장, 척수를, 복부검사 시 간과 신장의 위치를 선택하여 in-vitro와 in-vivo 계측이 가능한 광유도발광선량계(Optically Stimulated Luminescent Dosimeter, Landauer, Inc., USA)를 이용하여 측정하였다. 폐암환자의 CT 검사 시 10명의 CTDIvol값은 5.7배, DLP값은 약 2.4배, 간암환자의 CTDIvol값은 3.8배, DLP값은 약 1.6배의 값을 나타내었고, OSLD를 이용한 실측정치 역시 폐암환자의 경우 6배, 간암환자의 경우 5.5배의 차이를 보이는 등 4DCT 검사에서 전체적인 피폭선량의 증가를 볼 수 있었다. 방사선치료 시 호흡에 의한 치료부위의 위치변화를 4DCT 검사를 이용하여 움직임을 보정하여 치료계획시 치료용적의 정확성을 높일 수 있으나 4DCT 검사로 인한 환자의 피폭선량 증가를 고려하여 검사시간과 검사범위를 줄여 피폭선량을 감소시키기 위한 노력이 필요하다.

전산화 단층 촬영 장치를 이용한 뇌척수 조사의 치료 계획 (Computed Tomographic Simulation of Craniospinal Irradiation)

  • 이충일;김회남;오택열;황도성;박남수;계철승;김연실
    • 대한방사선치료학회지
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 1999
  • The aim of this study is to improve the accuracy of field placement and junction between adjacent fields and block shielding through the use of a computed tomography(CT) simulator and virtual simulation. The information was acquired by assessment of Alderson Rando phantom image using CT simulator (I.Q. Xtra - Picker), determination of each field by virtual fluoroscopy of voxel IQ workstation AcQsim and colored critical structures that were obtained by contouring in virtual simulation. And also using a coronal, sagittal and axial view can determine the field and adjacent field gap correctly without calculation during the procedure. With the treatment planning by using the Helax TMS 4.0, the dose in the junction among the adjacent fields and the spinal cord and cribriform plate of the critical structure was evaluated by the dose volume histogram. The pilot image of coronal and sagittal view took about 2minutes and 26minutes to get 100 images. Image translation to the virtual simulation workstation took about 6minutes. Contouring a critical structure such as cribriform plate, spinal cord using a virtual fluoroscopy were eligible to determine a correct field and shielding. The process took about 20 minutes. As the result of the Helax planning, the dose distribution in adjacent field junction was ideal, and the dose level shows almost 100 percentage in the dose volume histogram of the spinal cord and cribriform plate CT simulation can get a correct therapy area due to enhancement of critical structures such as spinal cord and cribriform plate. In addition, using a Spiral CT scanner can be saved a lot of time to plan a simulation therefore this function can reduce difficulties to keep the patient position without any movements to the patient, physician and radiotherapy technician.

  • PDF

Magnetic resonance image-based tomotherapy planning for prostate cancer

  • Jung, Sang Hoon;Kim, Jinsung;Chung, Yoonsun;Keserci, Bilgin;Pyo, Hongryull;Park, Hee Chul;Park, Won
    • Radiation Oncology Journal
    • /
    • 제38권1호
    • /
    • pp.52-59
    • /
    • 2020
  • Purpose: To evaluate and compare the feasibilities of magnetic resonance (MR) image-based planning using synthetic computed tomography (sCT) versus CT (pCT)-based planning in helical tomotherapy for prostate cancer. Materials and Methods: A retrospective evaluation was performed in 16 patients with prostate cancer who had been treated with helical tomotherapy. MR images were acquired using a dedicated therapy sequence; sCT images were generated using magnetic resonance for calculating attenuation (MRCAT). The three-dimensional dose distribution according to sCT was recalculated using a previously optimized plan and was compared with the doses calculated using pCT. Results: The mean planning target volume doses calculated by sCT and pCT differed by 0.65% ± 1.11% (p = 0.03). Three-dimensional gamma analysis at a 2%/2 mm dose difference/distance to agreement yielded a pass rate of 0.976 (range, 0.658 to 0.986). Conclusion: The dose distribution results obtained using tomotherapy from MR-only simulations were in good agreement with the dose distribution results from simulation CT, with mean dose differences of less than 1% for target volume and normal organs in patients with prostate cancer.