• Title/Summary/Keyword: CT scanning

Search Result 372, Processing Time 0.025 seconds

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.173-182
    • /
    • 1999
  • Contrast-enhanced CT has an important role in assessing liver lesions, the optimal protocol to get most effective result is not clear. The mein goal when deciding injention protocol is to optimize lesion detectability with rapid scanning when lesion to liver contrast is maximum. For this purpose, we developed a physiological model of the contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver is achieved in two paths. This dual supply characteristic distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and to second, by portal vein. However, it is assumed that only gepatic artery can supply blood to hepatocellular carcinoma(HCC) compartment, thus, the difference of contrast enhancement is resulted between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using the computer program Matlab, CT contrast-enhancement curves were simulated. The simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with the mean enhancement curves from 24 patients exposed to the same protocols as the simulation. These enhancement curves showed a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and the effects were analyzed. The variables to be considered in the injection protocol were injection rate, dose, and concentration of contrast material. These data may help to optimize scanning protocols for better diagnosis.

  • PDF

Effect of Gamma Rays Emitted by the 99mTc on the CT Image (99mTc에서 방출되는 감마선이 CT 영상에 미치는 영향)

  • Park, Jae-Yoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2019
  • This study examines the changes that $^{99m}Tc$ causes to CT(Computed Tomography) images quantitatively when CT scans were continuously performed using $^{99m}Tc$. With the use of the CT, $^{99m}Tc$ 740MBq was injected into the Resolution Phantom and Water Phantom, and the tube voltage was changed with 80 kVp and 120 kVp, scanning before and after the injection. The result indicate, by comparing the Signal Intensity according to the presence or absence of the $^{99m}Tc$ injection with the tube voltage of 120 kVp and 80 kVp, a decrease of 0.173 and 0.241 was observed respectively and the spatial resolution increase of 0.090 and 0.109 was observed respectively. The order of the test should be considered because the gamma rays of the radiopharmaceutical used in the nuclear medicine test do not affect the CT while the effective half-life of the radiopharmaceuticals should be considered for the CT scan to reduce the influence of the gamma rays emitted after the nuclear medicine test, with the possibility to reduce the difference of the results.

Optimization of Brain Computed Tomography Protocols to Radiation Dose Reduction (뇌전산화단층검사에서 방사선량 저감을 위한 최적화 프로토콜 연구)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.116-123
    • /
    • 2018
  • This study is a model experimental study using a phantom to propose an optimized brain CT scan protocol that can reduce the radiation dose of a patient and remain quality of image. We investigate the CT scan parameters of brain CT in clinical medical institutions and to measure the important parameters that determine the quality of CT images. We used 52 multislice spiral CT (SOMATOM Definition AS+, Siemens Healthcare, Germany). The scan parameters were tube voltage (kVp), tube current (mAs), scan time, slice thickness, pitch, and scan field of view (SFOV) directly related to the patient's exposure dose. The CT dose indicators were CTDIvol and DLP. The CT images were obtained while increasing the imaging conditions constantly from the phantom limit value (Q1) to the maximum value (Q4) for AAPM CT performance evaluation. And statistics analyzed with Pearson's correlation coefficients. The result of tube voltage that the increase in tube voltage proportionally increases the variation range of the CT number. And similar results were obtained in the qualitative evaluation of the CT image compared to the tube voltage of 120 kVp, which was applied clinically at 100 kVp. Also, the scan conditions were appropriate in the tube current range of 250 mAs to 350 mAs when the tube voltage was 100 kVp. Therefore, by applying the proposed brain CT scanning parameters can be reduced the radiation dose of the patient while maintaining quality of image.

Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

  • Ko, In OK;Park, Ji Ae;Lee, Won Ho;Lim, Sang Moo;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

Measurement of CT Numbers for Effective Atomic Number And Physical Density of Compound (화합물의 물리적 밀도와 유효원자번호에 대한 CT수 측정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • In the AAPM CT performance phantom, there is little data on the CT number of the effective atomic number and physical density corresponding to each peg and water of the CT number calibration insert. Therefore, the necessity of documentation was raised.The purpose of this study is to calculate the effective atomic number for each peg and water of the CT number calibration insert in the AAPM CT performance phantom, and to measure the CT number for the calculated effective atomic number and physical density for comparative analysis.In order to obtain CT number data on the effective atomic number and physical density of each peg and water from the CT number calibration insert of the AAPM CT performance phantom, the effective atomic number for each peg and water was first calculated. Then, CT slices were obtained by scanning the CT number calibration with a CT scanner. CT numbers were measured for each peg and water in the central CT slice. As a result, the CT numbers for the effective atomic number showed a nonlinear pattern of repeating the increase and decrease as the effective atomic number increased. In addition, the CT numbers for physical density showed a nonlinear pattern of repeating the increase and decrease as the physical density increased.

Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images (두개골의 3차원 영상 분석을 위한 전산화단층촬영 방법의 비교-상층 두께가 3차원 영상의 계측에 미치는 영향)

  • Jeong Ho-Gul;Kim Kee-Deog;Park Hyok;Kim Dong-Ook;Jeong Haijo;Kim Hee-Joung;Yoo Sun Koo;Kim Yong Oock;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.151-157
    • /
    • 2004
  • Purpose : To evaluate the quantitative accuracy of three-dimensional (3D) images by means of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. Materials and Mathods : An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. Results: 11 line items in Conventional 3 mm, 8 in Helical 3mm, 11 in Conventional 5mm, 10 in Helical 5mm, 5 in Conventional 7mm and 9 in Helical 7mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2mm in 19 line items of Conventional 3mm, 20 of Helical 3mm, 15 of Conventional 5mm, 18 of Helical 5mm, II of Conventional 7mm and 16 of Helical 7mm. Conclusion: Considering image quality and patient's exposure time, scanning protocol of Helical 5mm is recommended for 3D image analysis of the skull in CT.

  • PDF

Evaluation of the Availability of the Wide Coverage Volume Axial Mode in Pediatric Cardiac CT (소아 심장 CT검사 시 Wide Coverage Volume Axial Mode의 유용성 평가)

  • Park, Ki Seok;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.683-689
    • /
    • 2019
  • We are trying to evaluate usefulness of Wide Coverage Volume Axial Mode by comparing and analyzing for exposure doses to patients and video quality extracted from two materials. First material is a computer tomography scanning of paediatric cardiac made by using High Pitch Mode, which is designed for diagnosing Congenital cardiac diseases. Second material is computer tomography scanning of paediatric cardiac made by using Wide Coverage Volume Axial Mode. When we did computer tomography scanning of paediatric cardiac, we used High Pitch Mode and Wide Coverage Volume Axial Mode to 50 patients of each, overall 100 patients. Also, we compared exposure doses to patients using videos got from each protocol. Then we compared video quality by calculating SNR and CNR by setting ROI of each. Not only exposure doses to patients were reduced by 13.07 %, but also SNR and CNR were improved when testing used Wide Coverage Volume Axial Mode rather than using High Pitch Mode. Wide Coverage Volume Axial Mode reduced testing time by using high-speed scanner. Furthermore, we can find out that Wide Coverage Volume Axial Mode is an useful method through improving video quality and reducing exposure doses to patients than using High Pitch Mode from ASiR-V, which is low-dose technology.

Generalized Pulp Stones of Primary Dentition in a Patient with Molar-Incisor Malformation : A Case Report (Molar-Incisor Malformation 환자의 유치열 내 전반적인 치수석 관찰의 증례 보고)

  • Lee, Dongyun;Shin, Jisun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • Molar-incisor malformation (MIM) is a new type of root anomaly reported recently. The characteristics of MIM are dysplastic root formations, constriction of pulp chambers and presence of calcified matrices at the level of cementoenamel junction in permanent first molars and primary second molars. In some cases, permanent maxillary incisors are also affected. The permanent first molars of the patient in this case report were affected with MIM. Generalized pulp stones were observed in overall primary dentition. Micro-computed tomography (micro-CT) imaging and scanning electron microscope-energy dispersive X-ray spectrometer analysis were performed on the extracted mandibular first molar and maxillary primary second molar of the patient. Micro-CT images revealed the discontinuity of enamel directly connected to an accessory canal of the root.