• 제목/요약/키워드: CT image quality

검색결과 409건 처리시간 0.026초

PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가 (Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT)

  • 이충운;유연욱;문종운;김윤철
    • 핵의학기술
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

PET/CT 영상 움직임 보정 (Motion Correction in PET/CT Images)

  • 우상근;천기정
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

전산화단층 모의치료장치의 정도관리 항목 제안 (Proposal of CT Simulator Quality Assurance Items)

  • 김연래;윤영우;정재용;이정우;정진범
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.367-373
    • /
    • 2021
  • A quality assurance of computed tomography(CT) have done seven items that were water attenuation coefficient, noise, homogeneity, spatial resolution, contrast resolution, slice thickness, artifact using by standard phantom. But there is no quality assurance items and methods for CT simulator at domestic institutions yet. Therefore the study aimed to access the CT dose index(CTDI), table tilting, image distortion, laser accuracy, table movement accuracy and CT seven items for CT simulator quality assurance. The CTDI at the center of the head phantom was 0.81 for 80 kVp, 1.55 for 100 kVp, 2.50 for 120 mm, 0.22 for 80 kVp at the center of the body phantom, 0.469 for 100 kVp, and 0.81 for 120 kVp. The table tilting was within the tolerance range of ±1.0° or less. Image distortion had 1 mm distortion in the left and right images based on the center, and the laser accuracy was measured within ±2 mm tolerance. The purpose of this study is to improve the quality assurance items suitable for the current situation in Korea in order to protect the normal tissues during the radiation treatment process and manage the CT simulator that is implemented to find the location of the tumor more clearly. In order to improve the accuracy of the CT simulator when looking at the results, the error range of each item should be small. It is hoped that the quality assurance items of the CT simulator will be improved by suggesting the quality assurance direction of the CT simulator in this study, and the results of radiation therapy will also improve.

ADMIRE 반복적 재구성 파라메터에 따른 CT 영상의 특성 및 무참조 기반 화질 평가: 선행연구 (Evaluation of Performance and No-reference-based Quality for CT Image with ADMIRE Iterative Reconstruction Parameters: A Pilot Study)

  • 박보민;서유진;강성현;심지나;김하진;임세원;이영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권3호
    • /
    • pp.175-182
    • /
    • 2024
  • Advanced modeled iterative reconstruction (ADMIRE) represents a repetitive reconstruction method that can adjust strength and kernel, each of which are known to affect computed tomography (CT) image quality. The aim of this study was to quantitatively analyze the noise and spatial resolution of CT images according to ADMIRE control factors. Patient images were obtained by applying ADMIRE strength 2 and 3, and kernel B40 and B59. For quantitative evaluations, the noise level, spatial resolution, and overall image quality were measured using coefficient of variation (COV), edge rise distance (ERD), and natural image quality evaluation (NIQE). The superior values for the average COV, ERD, and NIQE results were obtained for the ADMIRE reconstruction conditions of ADMIRE 2 + B40, ADMIRE 3 + B59, and ADMIRE3 + B59. NIQE, which represents the overall image quality based on no-reference, was about 6.04 when using ADMIRE 3 + B59, showing the best result among the reconstructed image acquisition conditions. The results of this study indicate that the ADMIRE strength and kernel chosen for use in ADMIRE reconstruction have a significant impact on CT image quality. This highlights the importance of adjusting to the control factors in consideration of the clinical environment.

고급 모델 반복 재구성법 (ADMIRE)을 사용한 CT 영상에서의 노이즈 레벨 및 블라인드 화질 평가 (Evaluation of Noise Level and Blind Quality in CT Images using Advanced Modeled Iterative Reconstruction (ADMIRE))

  • 심지나;강성현;이영진
    • 한국방사선학회논문지
    • /
    • 제16권3호
    • /
    • pp.203-209
    • /
    • 2022
  • 전산화단층촬영장치 (Computed Tomography, CT)의 화질을 유지하면서 방사선량을 낮추기 위한 대표적인 방법 중에 하나는 모델기반 반복 재구성법 (Model-Based Iterative Reconstruction, MBIR)을 사용하는 것이다. 본 연구에서는 MBIR의 대표적인 모델로 잘 알려진 고급 모델 반복 재구성법 (Advanced Modeled Iterative Reconstruction, ADMIRE)의 강도를 조절하여 영상의 화질을 평가하고자 하였다. 연구는 팬텀을 사용하여 수행되었고, ADMIRE의 강도를 1에서부터 5까지 1 단위로 조절하면서 CT 영상을 획득하였다. 정량적 평가는 변동 계수 (coefficient of variation, COV)와 대조도 대 잡음비 (contrast to noise ratio, CNR)를 활용한 노이즈 레벨과 natural image quality evaluator (NIQE)와 blind/referenceless image spatial quality evaluator (BRISQUE)의 블라인드 품질 평가를 수행하였다. 결과적으로 노이즈 레벨 및 블라인드 품질 평가 결과에서 모두 ADMIRE의 강도가 높아질수록 우수한 결과가 도출되었다. 특히, COV와 CNR은 ADMIRE 1에 비하여 5에서 각각 1.89 및 1.75배 향상됨을 확인하였고, NIQE와 BRISQUE는 재구성 강도 1에 비하여 5에서 각각 1.35 및 1.22배 향상됨이 증명되었다. 결론적으로 ADMIRE의 재구성 강도는 CT 영상의 노이즈 레벨 및 전체적인 화질 평가에 큰 영향을 끼친다는 것을 증명하였다.

블라인드 품질 평가 방법을 사용한 주석필터 사용 유무에 따른 CT 영상 특성 비교 (Comparison of CT Image Performance with or without Tin Filter based on Blind Image Quality Evaluation Method)

  • 심지나;이영진
    • 한국방사선학회논문지
    • /
    • 제15권3호
    • /
    • pp.301-306
    • /
    • 2021
  • 전산화단층촬영장치 (Computed tomography, CT)의 의료 방사선량을 낮추기 위한 방법으로 주석필터의 사용을 통해 직접적으로 환자의 선량을 낮추는 방법이 있다. 그러나 주석필터의 사용으로 바뀐 X선 스펙트럼으로 인해 기존의 영상과 다른 인상의 영상으로 나타나기 때문에 질병 진단에 영향을 줄 수 있다. 따라서 본 연구에서는 흉부 저선량 CT에서 주석필터의 적용 및 high pitch에 따른 영상평가를 진행함으로써 주석필터 사용 시 영상의 변화 양상을 살펴보았다. 본 연구에서는 비교를 위해 총 3개의 그룹으로 나누어 영상을 획득하였다. Group 1은 주석필터를 사용하지 않았으며, 기존에 사용하던 pitch인 0.8의 영상을 획득하였다. Group 2는 주석필터를 사용하였고, pitch는 0.8이며 Group 3은 주석필터를 사용하였으며 pitch는 2.5이다. 영상의 화질을 비교하기 위해 no-reference 기반으로 사용되는 블라인드 품질 평가 인자 중 natural image quality evaluator (NIQE)와 blind/referenceless image spatial quality evaluator (BRISQUE)를 사용하였다. 그 결과 NIQE 수치는 Group 1, Group 3, Group 2 의 순서대로 낮게 나타났다. BRISQUE 수치는 Group 3, Group 2, Group 1 의 순서대로 낮게 나타났다. 이를 통해 흉부 저선량 CT에서 주석필터 및 high pitch 기술의 영상의 우수성을 확인함으로써 특히 호흡 조절이 어려운 흉부 저선량 CT 환자에 있어서 더 정확한 영상에 대한 기대감을 가질 수 있는 기초 자료로 활용될 수 있을 것이라 사료된다.

The Lowest Dose for CT Attenuation Correction in PET/CT

  • Kang, Byung-Sam;Son, Jin-Hyun;Park, Hoon-Hee;Dong, Kyung-Rae
    • 대한디지털의료영상학회논문지
    • /
    • 제13권3호
    • /
    • pp.111-115
    • /
    • 2011
  • PET/CT(Positron Emission Tomography/Computed Tomography) is an examination combining morphological and functional information in one examination. The purpose of this study is to see the lowest CT dose for attenuation correction in the PET/CT maintaining good image quality when considering CT scan dose to the patients. We injected $^{18}F$-FDG and water into the cylinder shaped phantom, and obtained emission images for 3 mins and transmission images(140 kVp, 8 sec, 10~200 mA for transmission images), and reconstructed the images to PET/CT images with Iterative method. Data(Maximum, Minimum, Average, Standard Deviation) were obtained by drawing a circular ROI(Region Of Interest) on each sphere in each image set with Image J program. And then described SD according to the CT and PEC/CT images as graphes. Through the graphes, we got the relationships of mA and quality of images. SDs according to CT graph were 16.25 at 10 mA, 7.26 at 50 mA, 5.5 at 100 mA, 4.29 at 150 mA, and 3.83 at 200 mA, i.e. the higer mA, the better image quality was presented. SDs according to PET/CT graph were 1823.2 at 10 mA, 1825.1 at 50 mA, 1828.4 at 100 mA, 1813.8 at 150 mA, and 1811.3 at 200 mA. Calculated SDs at PET/CT images were maintained. This means images quality is maintained having nothing to do with mA of high and low.

  • PDF

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • 제23권4호
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

AAPM CT 성능 평가용 팬텀을 이용한 전산화단층촬영의 영상 평가를 위한 정도관리 사례 연구 (Case Study of Quality Assurance for MDCT Image Quality Evaluation Using AAPM CT Performance Phantom)

  • 장근조;권대철
    • 한국콘텐츠학회논문지
    • /
    • 제7권7호
    • /
    • pp.114-123
    • /
    • 2007
  • 전산화단층촬영(CT)은 영상의학에서 매우 유용한 검사의 진단법으로 적절한 정도관리에 의한 영상의 평가가 필요하다. CT의 정도관리 항목에서 영상의 질을 결정하는 중요한 요소를 위해 AAPM CT 팬텀으로 영상검사를 수행하였다. 정도관리 평가항목은 "특수의료장비의 설치 및 운영에 관한 규칙"에서 정한 기준으로 물의 CT 감약계수, 노이즈, 균일도, 공간분해능, 대조도 분해능, 절편 두께, 인공물 존재 유무를 평가하였다. 획득한 영상은 규칙의 합격기준에 충족하였다. CT 영상의 질을 최적으로 유지하기 위해서는 지속적으로 팬텀 및 임상검사를 통해 영상의 질을 평가하기 위해 정도관리를 시행하여야 한다.