• Title/Summary/Keyword: CT Image

Search Result 1,677, Processing Time 0.027 seconds

A Study on the Liver and Tumor Segmentation and Hologram Visualization of CT Images Using Deep Learning (딥러닝을 이용한 CT 영상의 간과 종양 분할과 홀로그램 시각화 기법 연구)

  • Kim, Dae Jin;Kim, Young Jae;Jeon, Youngbae;Hwang, Tae-sik;Choi, Seok Won;Baek, Jeong-Heum;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.757-768
    • /
    • 2022
  • In this paper, we proposed a system that visualizes a hologram device in 3D by utilizing the CT image segmentation function based on artificial intelligence deep learning. The input axial CT medical image is converted into Sagittal and Coronal, and the input image and the converted image are divided into 3D volumes using ResUNet, a deep learning model. In addition, the volume is created by segmenting the tumor region in the segmented liver image. Each result is integrated into one 3D volume, displayed in a medical image viewer, and converted into a video. When the converted video is transmitted to the hologram device and output from the device, a 3D image with a sense of space can be checked. As for the performance of the deep learning model, in Axial, the basic input image, DSC showed 95.0% performance in liver region segmentation and 67.5% in liver tumor region segmentation. If the system is applied to a real-world care environment, additional physical contact is not required, making it safer for patients to explain changes before and after surgery more easily. In addition, it will provide medical staff with information on liver and liver tumors necessary for treatment or surgery in a three-dimensional manner, and help patients manage them after surgery by comparing and observing the liver before and after liver resection.

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

Image Quality Analysis when applying DLIR Reconstruction Techniques in NECT CT (NECT CT에서 DLIR 재구성기법 적용 시 화질분석)

  • Yoon, Joon;Kim, Hyeon-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • 120 kVp FBP reconstruction image standard by using raw data after scanning by changing tube voltage among the NECK CT protocols that are broad applied in clinical practice using a human phantom including thyroid gland The usefulness of the DLIR reconstruction technique was investigated. As a result, CTDIvol decreased when the DLIR reconstruction technique was applied, and in particular, the image quality obtained under the same standard scanning conditions at a lower dose for ASIR-V and DLIR reconstruction was reached than when FBP was applied at the same kVp In addition, as a result of SNR and CNR analysis, the DLIR reconstructed image was analyzed with high SNR and CNR values, and SSIM analysis, the SSIM index of the 100 kVp, DLIR reconstructed image was measured to be close to 1, and it was analyzed that the similarity of the reconstructed image to the original image was high (p>0.05). If the results of this study are used to supplement clinical image evaluation and further develop an algorithm applicable to various anatomical structures, it is thought that it will be useful for clinical application as it is possible to maintain the image quality while lowering the examination dose.

A Study on 3D CT Image Segmentation and Registration of Mandibular First Premolar (하학 제 1 소구치의 3 차원 CT 영상 분할 및 정합 연구)

  • Jin K.C.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.175-176
    • /
    • 2006
  • The aim of the 3D medical imaging is to facilitate the creation of clinically usable image-based algorithm. Clinically usable imaging algorithm for image analysis requires a high degree of interaction to verify and correct results from registration algorithms, such as the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) which are the class libraries. ITK provides segmentation algorithms and VTK has powerful 3D visualization. However, to apply those libraries to the medical images such as Computerized Tomography (CT), the algorithm based on the interactive construction and modification of data objects are necessary. In this paper we showed the 3D registration about mandibular premolar of human teeth acquired by micro-CT scanner. Also, we used the ITK to find the contour of pulp layer of premolar, furthermore, the 3D imaging was visualized with VTK designed to create one kind of view on the data of 3D visualization. Finally, we evaluated that the volume model of pulp layer would be useful for the tooth morphology in dental medicine.

  • PDF

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

Emphysema Region Pre-Detection Method for Emphysema Disease Diagnosis using Lung CT Images (흉부 CT 영상에서 폐기종질환진단을 위한 폐기종영역 사전 탐지 기법)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Park, Min-Wook;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, we propose a simple but effective algorithm to increase the speed of Emphysema region classification. Emphysema region classification method based on CT image consumes a lot of time because of the large number of subregions due to the large size of CT image. Some of the sub-regions contain no Emphysema and the classification of these regions is worthless. To speed up the classification process, we create an algorithm to select Emphysema region candidates and only use these candidates in the Emphysema region classification instead of all of the sub-regions. First, the lung region is detected. Then we threshold the lung region and only select the dark pixels because Emphysema only appeared in the dark area of the CT image. Then the thresholded pixels are clustered into a region that called the Emphysema pre-detected region or Emphysema region candidate. This region is then divided into sub-region for the Emphysema region classification. The experimental result shows that Emphysema region classification using predetected Emphysema region decreases the size of lung region which will result in about 84.51% of time reduction in Emphysema region classification.

  • PDF

Internal Defects Inspection of Die-cast Parts via the Comparison of X-ray CT Image and CAD Data (CAD 데이터 및 엑스레이 CT이미지 비교를 통한 다이캐스팅 부품의 내부 결함 검사방법)

  • Hong, Gyeong Taek;Shim, Jae Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Industrially, die-casting products are formed through casting, and so the methods to inspect the defects inside them are very restrictive. External inspection methods including visual inspection, sampling judgment, etc. enables researchers to inspect possible external defects, but x-ray inspection equipment has been generally used to inspect internal ones. Recently, they have been also applying three-dimensional internal inspections using CT equipment. However, they have their own limitations in applying to the use of industrial inspection due to limited detection size and long calculation time. To overcome the above problems, this paper has suggested a method to inspect internal defects by comparing the CAD data of the product to be inspected with the 3D data of the CT image. In this paper, we proposed a method for fast and accurate inspection in three dimensions by applying x-ray inspection to find internal defects in industrial parts such as aluminum die casting products. To show the effectiveness of the proposed method, a series of experiments have been carried out.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

의료 영상을 이용한 영상 분할 알고리듬 연구

  • 호동수;이형구;김성현;김도일;서태석;최보영;이진희
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.77-77
    • /
    • 2003
  • CT와 MRI의 단면 영상을 대상으로 영상분할 (Image segmentation)과 Image registration방법을 이용하여 인체 모델을 개발 하고자 한다. 우선 인체의 Head와 Neck부분의 CT와 MR 영상을 얻어 뼈, 근육, 인대, 그리고 그 밖의 장기의 해부학적 영상 특징을 분석하였다. 인체의 Head와 Neck 부분에 대한 CT와 MR 영상에 대해 각 부위별로 ROI(region-of-interrest)를 설정하였고, 각 volxel 마다 3차원 좌표를 계산할 수 있는 소프트웨어를 개발하였다. 특히 각 해부학적 영상에서 부위별로 CT 번호를 분석하고, pulse sequence에 따른 MRI 영상의 부위별 특정을 분석하였다. 이 분석한 자료를 바탕으로 영상 분할을 하였다. 영상 분할전에 각종 잡음(noise) 제거 및 영상 분할을 효과적으로 처리하기 위해 기본적인 영상처리 (filtering)를 구현하였고, 대조도(contrast) 및 밝기(brightness)를 조절할 수 있게 프로그램을 구현하였다. 영상 분할 방법 중 선(line) 및 에지(edge) 의 검출 방법, 문턱치화(threshold) 방법, 영역확대(region growing) 방법으로 영상 분할을 해봄으로써 우리의 인체 모델링 개발에 가장 적합한 영상 분할 알고리듬 방법을 찾도록 시도하였다. 결과적으로 말하면, 한가지 방법의 알고리듬을 쓰는 것보다는 인체의 부위에 따라 두 가지 이상의 알고리듬 방법을 쓰는 것이 원하고자 하는 부위를 영상 분할하는데 더 효과적이다는 것을 알게 되었다. 우리의 연구 과제에서는 영역확대(region growing) 방법과 문턱치화 방법, 모드법(피크니스, 밸리)의 알고리듬을 이용하여 영상 분할을 한 결과 우리가 얻고자 하는 인체 부위별 중 근육과 뼈를 구별하는데는 별 무리가 없었으나, 인대 및 기타 장기를 구별하는데는 어려움을 겪게 되었다. 이후에 좀더 알고리듬을 연구하여 이번 연구에서 구별하기 어려운 장기 부분도 구별 할 수 있도록 노력하겠다.

  • PDF

Carpal Bone Segmentation Using Modified Multi-Seed Based Region Growing

  • Choi, Kyung-Min;Kim, Sung-Min;Kim, Young-Soo;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.332-337
    • /
    • 2007
  • In the early twenty-first century, minimally invasive surgery is the mainstay of various kinds of surgical fields. Surgeons gave percutaneously surgical treatment of the screw directly using a fluoroscopic view in the past. The latest date, they began to operate the fractured carpal bone surgery using Computerized Tomography (CT). Carpal bones composed of wrist joint consist of eight small bones which have hexahedron and sponge shape. Because of these shape, it is difficult to grasp the shape of carpal bones using only CT image data. Although several image segmentation studies have been conducted with carpal bone CT image data, more studies about carpal bone using CT data are still required. Especially, to apply the software implemented from the studies to clinical fIeld, the outcomes should be user friendly and very accurate. To satisfy those conditions, we propose modified multi-seed region growing segmentation method which uses simple threshold and the canny edge detector for finding edge information more accurately. This method is able to use very easily and gives us high accuracy and high speed for extracting the edge information of carpal bones. Especially, using multi-seed points, multi-bone objects of the carpal bone are extracted simultaneously.