• Title/Summary/Keyword: CST Analysis

Search Result 202, Processing Time 0.022 seconds

The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity (항공기 주기환경이 대기부식위험도에 미치는 영향)

  • Yun, Juhee;Lee, Dooyoul;Park, Sungryul;Kim, Min-Saeng;Choi, Dongsu
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

Pitting Corrosion Inhibition of Sprinkler Copper Tubes via Forming of Cu-BTA Film on the Inner Surface of Corrosion pits

  • Suh, Sang Hee;Suh, Youngjoon;Kim, Sohee;Yang, Jun-Mo;Kim, Gyungtae
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.39-48
    • /
    • 2019
  • The feasibility of using benzotriazole (BTAH) to inhibit pitting corrosion in the sprinkler copper tubes was investigated by filling the tubes with BTAH-water solution in 829 households at an eight-year-old apartment complex. The water leakage rate was reduced by approximately 90% following BTAH treatment during 161 days from the previous year. The leakage of one of the two sprinkler copper tubes was investigated with optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis to determine the formation of Cu-BTA film inside the corrosion pits. All the inner components of the corrosion pits were coated with Cu-BTA films suggesting that BTAH molecules penetrated the corrosion products. The Cu-BTA film was about 2 nm in thickness at the bottom of a corrosion pit. A layer of CuCl and $Cu_2O$ phases lies under the Cu-BTA film. This complex structure effectively prevented the propagation of corrosion pits in the sprinkler copper tubes and reduced the water leakage.

Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator (배열회수보일러 복수예열기 부식 파손 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Kim, Kyung Min;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC (고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Failure Analysis of Stress Reliever in Heat-Transport Pipe of District Heating System

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.243-249
    • /
    • 2022
  • The objective of the present study was to perform failure analysis of double-layered bellow (expansion joint), a core part of stress reliever, used to relieve axial stresses induced by thermal expansion of heat-transport pipes in a district heating system. The bellow underwent tensile or compressive stresses due to its structure in terms of position. A leaked position sufferred a fatigue with a tensile component for decades. A cracked bellow contained a higher fraction of martensitic phase because of manufacturing and usage histories, which induced more brittleness on the component. Inclusions in the inner layer of the bellow acted as a site of stress concentration, from which cracks initiated and then propagated along the hoop direction from the inner surface of the inner layer under fatigue loading conditions. As the crack reached critical thickness, the crack propagated to the outer surface at a higher rate, resulting in leakage of the stress reliever.

Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603 (UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.

Algorithm for Determining Aircraft Washing Intervals Using Atmospheric Corrosion Monitoring of Airbase Data and an Artificial Neural Network (인공신경망과 대기부식환경 모니터링 데이터를 이용한 항공기 세척주기 결정 알고리즘)

  • Hyeok-Jun Kwon;Dooyoul Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.377-386
    • /
    • 2023
  • Aircraft washing is performed periodically for corrosion control. Currently, the aircraft washing interval is qualitatively set according to the geographical conditions of each base. We developed a washing interval determination algorithm based on atmospheric corrosion environment monitoring data at the Republic of Korea Air Force (ROKAF) bases and United States Air Force (USAF) bases to determine the optimal interval. The main factors of the washing interval decision algorithm were identified through hierarchical clustering, sensitivity analysis, and analysis of variance, and criteria were derived. To improve the classification accuracy, we developed a washing interval decision model based on an artificial neural network (ANN). The ANN model was calibrated and validated using the atmospheric corrosion environment monitoring data and washing intervals of the USAF bases. The new algorithm returned a three-level washing interval, depending on the corrosion rate of steel and the results of the ANN model. A new base-specific aircraft washing interval was proposed by inputting the atmospheric corrosion environment monitoring results of the ROKAF bases into the algorithm.

A study on the Enhancement of Gain and Axial Ratio Bandwidth of the Multilayer CP-DRA (다층 CP-DRA의 이득 및 축비대역폭 증대에 관한 연구)

  • Lee, Ho-Sang;Jo, Dong-Ki;Jung, Young-Ho;Kim, Cheol-Bok;Son, Ho-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.52-60
    • /
    • 2009
  • In this pater, a CP-DRA(Circularly Polarized Dielectric Resonator Antenna) using cross-slot-feed is studied to enhance the gain and axial ratio bandwidth. First, a single layer CP-DRA is studied as a reference for comparison. Then a new type of multilayer CP-DRA is proposed to enhance the gain and axial ratio bandwidth. In consideration of the antenna gain enhancement, the spacing between the elements of the multilayer CP-DRA is examined through analysis of the radiation performance of a 2$\times$2 planar amy of DRAs with a spacing of 0.7$\lambda_0$ and 1.2$\lambda_0$ using CST Microwave Studio. The measured result shows that the gain and bandwidth of the multilayer structure is approximately twice that of the single layer one. In the case of the array antenna in which the spacing between multilayer CP-DRA element is 1.2$\lambda_0$, a grating lobe is reduced, in contrast to what we can expect from a conventional antenna array. The gain is 13.4dBi and axial ratio bandwidth is 0.8GHz.