• Title/Summary/Keyword: CSNV

Search Result 3, Processing Time 0.188 seconds

Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

  • Seong Hyeon Yoon;Su Bin Lee;Eseul Baek;Ho-Jong Ju;Ju-Yeon Yoon
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.286-294
    • /
    • 2023
  • Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (formerly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich-enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8-99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8-99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.

RT-PCR Detection of Five Quarantine Plant RNA Viruses Belonging to Potyand Tospoviruses

  • Lee, Jong-Seung;Cho, Won-Kyong;Choi, Hong-Soo;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.291-296
    • /
    • 2011
  • In order to detect quarantine plant viruses, we developed reverse transcription-polymerase chain reaction (RT-PCR) primer pairs for five single-stranded (ss) plant RNA viruses that are not currently reported in Korea but could be potential harmful plant viral pathogens. Three viruses such as Chilli veinal mottle virus (ChiVMV), Colombian datura virus (CDV), and Tobacco etch virus (TEV) belong to the genus Potyvirus while Chrysanthemum stem necrosis virus (CSNV) and Iris yellow spot virus (IYSV) are members of the genus Tospovirus. To design RT-PCR primers, we used reported gene sequences corresponding to the capsid protein and polyprotein for ChiVMV, CDV, and TEV while using nucleocapsid protein regions for CSNV and IYSV. At least two different primer pairs were designed for each virus. Fifteen out of 16 primer pairs were successfully applied in detection of individual quarantine virus with high specificity and efficiency. Taken together, this study provides a rapid and useful protocol for detection of five quarantine viruses.

Occurrence of Viruses and Viroids in Chrysanthemum Plants (Dendranthema morifolium) Cultivated in Yesan-gun, Chungcheongnam-do in Korea (충남 예산 지역의 국화에서 바이러스 및 바이로이드 병들의 발생 현황)

  • Yoon Hyun, Bang;Eun Gyeong, Song;Younghye, Lee;Ki Hyun, Ryu
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.237-244
    • /
    • 2022
  • Chrysanthemum plants are one of the most economically important plants in South Korea. Both virus and viroid can cause diseases and economic damage to the plants. In this study, we investigated the detection of seven viruses and two viroids in 350 chrysanthemum plants cultivated in Yesan-gun, Chungcheongnam-do. Two viruses, chrysanthemum virus B (CVB) and tomato aspermy virus (TAV), and two viroids, chrysanthemum chlorotic mottle viroid (CChMVd) and chrysanthemum stunt viroid (CSVd), were detected in this study. The two viruses were detected in six samples and one sample, respectively. The two viroids were detected in 97 samples and 21 samples, respectively. The nucleotide sequences of the CVB-CN-Y, TAV-CN-Y, CChMVd-CN-Y, and CSVd-CN-Y obtained in this study showed 83.7-86.9%, 99.2-100.0%, 94.4-99.5%, and 95.7-99.7% identity, respectively, compared to their other strains/isolates. The CVB-CN-Y and TAV-CN-Y showed the greatest nucleotide sequence homology to CVB-GS1 and three TAV isolates (TAV-V, TAV-P, and TAV-ChJ), respectively. The CChMVd-CN-Y and CSVd-CN-Y showed the greatest nucleotide sequence homology to CChMVd-Horst and four CSVd isolates (Au1.1, K4pop, Sagae, and Tochigi), respectively. This study is the report on the infection rate of viruses and viroids in chrysanthemum plants cultivated in Yesan-gun in 2021.