• Title/Summary/Keyword: CRUISE

Search Result 599, Processing Time 0.028 seconds

Design of an adaptive backstepping controller for auto-berthing a cruise ship under wind loads

  • Park, Jong-Yong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.347-360
    • /
    • 2014
  • The auto-berthing of a ship requires excellent control for safe accomplishment. Crabbing, which is the pure sway motion of a ship without surge velocity, can be used for this purpose. Crabbing is induced by a peculiar operation procedure known as the push-pull mode. When a ship is in the push-pull mode, an interacting force is induced by complex turbulent flow around the ship generated by the propellers and side thrusters. In this paper, three degrees of freedom equations of the motions of crabbing are derived. The equations are used to apply the adaptive backstepping control method to the auto-berthing controller of a cruise ship. The controller is capable of handling the system non-linearity and uncertainty of the berthing process. A control allocation algorithm for a ship equipped with two propellers and two side thrusters is also developed, the performance of which is validated by simulation of auto-berthing.

Design of automatic cruise control system of mobile robot using fuzzy-neural control technique (퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

Simulation for Intelligent Cruise Control of vehicle using Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 차량의 정속주행 시뮬레이션)

  • 임영도;김승철;박재형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.603-610
    • /
    • 1998
  • The purpose of this paper is to describe how the characteristics of the movement of cars can be modeled with computers. For this, we use Matlab and simulate the characteristics of the cruise-speed at which the car is driven using the Fuzzy PID controller. The model of the car is designed by M-S(Matlab-Simulink) and each parameter of PID is estimated automatically by the Fuzzy controller. The simulation of the car is carried out on straight base tracks, and then this is compared and analyzed with the simple Fuzzy controller and the simple PID controller.

  • PDF

Design of 24 GHz Radar with Subspace-Based Digital Beam Forming for ACC Stop-and-Go System

  • Jeong, Seong-Hee;Oh, Jun-Nam;Lee, Kwae-Hi
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.827-830
    • /
    • 2010
  • For an adaptive cruise control (ACC) stop-and-go system in automotive applications, three radar sensors are needed because two 24 GHz short range radars are used for object detection in an adjacent lane, and one 77 GHz long-range radar is used for object detection in the center lane. In this letter, we propose a single sensor-based 24 GHz radar with a detection capability of up to 150 m and ${\pm}30^{\circ}$ for an ACC stop-and-go system. The developed radar is highly integrated with a high gain patch antenna, four channel receivers with GaAs RF ICs, and back-end processing board with subspace based digital beam forming algorithm.