• Title/Summary/Keyword: CRHPC

Search Result 2, Processing Time 0.018 seconds

Application of adaptive controller using receding-horizon predictive control strategy to the electric furnace (이동구간 예측제어 기법을 이용한 적응 제어기의 전기로 적용)

  • Kim, Jin-Hwan;Huh, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Model Based Predictive Control(MBPC) has been widely used in predictive control since 80's. GPC[1] which is the superset of many MBPC strategies a popular method, but GPC has some weakness, such as insufficient stability analysis, non-applicability to internally unstable systems. However, CRHPC[2] proposed in 1991 overcomes the above limitations. So we chose RHPC based on CRHPC for electric furnace control. An electric furnace which has nonlinear properties and large time delay is difficult to control by linear controller because it needs nearly perfect modelling and optimal gain in case of PID. As a result, those controls are very time-consuming. In this paper, we applied RHPC with equality constraint to electric furnace. The reults of experiments also include the case of RHPC with monotonic weighting improving the transient response and including unmodelled dynamics. So, This paper proved the practical aspect of RHPC for real processes.

  • PDF

Receding-Horizon Predictive Control with Input Constraints (입력 제한조건을 갖는 이동구간(Receding-Horizon) 예측제어)

  • Shin, Hyun-Chang;Kim, Jin-Hwan;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.777-780
    • /
    • 1995
  • Accounting for actuator nonlinearities in control loops has often been perceived as an implementation issue and usually excluded in the design of controllers. Nonlinearities treated in this paper are saturation, and they are modelled as an inequality constraint. The CRHPC(Constrained Receding Horizon Predictive Control) with inequality constraints algorithm is used to handle actuator rate and amplitude limits simultaneously or respectively. Optimum values of future control signals are obtained by quadratic programming. Simulated examples show that predictive control law with inequality constraints offers good performance as compared with input clipping.

  • PDF