• Title/Summary/Keyword: CREBH

Search Result 2, Processing Time 0.02 seconds

Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells

  • Jang, Won-Gu;Kim, Eun-Jung;Koh, Jeong-Tae
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.735-740
    • /
    • 2011
  • Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.

Molecular Mechanism of Endoplasmic Reticulum Stress Transducer OASIS Family (소포체스트레스 센서 OASIS family의 분자기전)

  • Kwon, Kisang;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.473-480
    • /
    • 2015
  • The endoplasmic reticulum (ER) in the eukaryotic cells is the first compartment in the secretory pathway. Almost secretory proteins and membrane proteins are secreted through the ER, in which post-translational modifications occur via diverse signals from the ER lumen to the cytoplasm and nucleus. Only then are correctly-folded proteins secreted to the outside cells. Unfolded proteins that accumulate in the ER cause a kind of intracellular stress, ER stress, and activate an unfolded protein response (UPR) system. The 3 major transducers of the UPR are inositol requiring 1 (IRE1), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6), all of which are ER transmembrane proteins. Recently, novel types of a new ATF6 family have been identified. Those commonly have an ER-transmembrane domain, a transcription-activation domain and a basic leucine zipper (bZIP) domain―Luman, OASIS, BBF2H7, CREBH and CREB4. Each factor functions by regulating the UPR in specific organs and tissues. Although the detailed molecular mechanisms of OASIS family members are unknown, in this study we comprehensively introduce these molecular signals.