• 제목/요약/키워드: CPV module

검색결과 17건 처리시간 0.018초

Truncated DCPC를 이용한 저배율 태양광 모듈 개발 (Development of Low Concentrated Photovoltaic using a Truncated DCPC)

  • 이동길;김양규;이광훈;장원근;박영식
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.33-37
    • /
    • 2013
  • LCPV modules under 5 suns consist of reflective optics and receiver modules, similar to a typical fixed concentration PV module. If they are to be used as a compound parabolic concentrator, which is filled with a dielectric material, a compact plate structure of the fixed CPV can be designed and built at a large acceptance angle. These types of flat-$plate{\mu}$-LCPV modules are suitable for building integrated photovoltaic modules, facade applications, mobile devices, and small home appliances. Therefore, in this study, the possibilities for other application devices were studied and presented by designing and fabricating LCPCs for CPV modules.

III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석 (Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor)

  • 고재홍
    • 조명전기설비학회논문지
    • /
    • 제26권9호
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구 (Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module)

  • 도규형;김태훈;한용식
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

고집광 태양전지 모듈의 냉각시스템 개발 (Development of a Cooling System for a Concentrating Photovoltaic Module)

  • 김태훈;도규형;최병일;한용식;김명배
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.551-560
    • /
    • 2011
  • 본 연구에서는 열분산기 및 자연대류 히트 싱크로 구성된 집광형 태양전지 모듈용 냉각 장치를 제안하고자 한다. 이를 위해, 기존 연구자들의 해석적 연구를 바탕으로 집광형 태양전지 모듈용 열분산기 및 자연대류 히트 싱크를 설계하였다. 제안된 냉각 장치의 성능을 평가하기 위하여, 발열량과 수직 기준 경사각 변화에 따른 열성능 평가실험을 수행하였다. 실험결과로부터, 제안된 냉각 장치가 집광형 태양전지 모듈의 설계 조건을 만족하는 것을 확인하였다. 마지막으로 발열량과 수직기준 경사각 변화에 따른 자연대류 히트 싱크의 열성능을 예측할 수 있는 상관식을 제시하였다.

포토센서를 이용한 태양위치 추적기의 성능분석에 관한 연구 (Performance Evaluation of a Solar Tracking PV System with Photo Sensors)

  • 정병호;조금배;이강연
    • 조명전기설비학회논문지
    • /
    • 제27권5호
    • /
    • pp.67-73
    • /
    • 2013
  • The conversion of solar radiation into electrical energy by Photo-Voltaic (PV) effect is a very promising technology, being clean, silent and reliable, with very small maintenance costs and small ecological impact. The output power produced by the PV panels depends strongly on the incident light radiation. The continuous modification of the sun-earth relative position determines a continuously changing of incident radiation on a fixed PV panel. The point of maximum received energy is reached when the direction of solar radiation is perpendicular on the panel surface. Thus an increase of the output energy of a given PV panel can be obtained by mounting the panel on a solar tracking device that follows the sun trajectory. Tracking systems that have two axes and follow the sun closely at all times during the day are currently the most popular. This paper presents research conducted into the performance of Solar tracking system with photosensors. The results show that an optimized dual-axis tracking system with photosensor performance and analysis. From the obtained results, it is seen that the sun tracking system improves the energy and energy efficiency of the PV panel.ti-junction CPV module promises to accelerate growth in photovoltaic power generation.

GPS 태양추적장치를 이용한 집광형 태양광발전시스템에 관한 연구 (A Study on Concentrating Photovoltaic System by GPS Solar Tracker)

  • 정용환;임중열
    • 전기전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.211-217
    • /
    • 2011
  • 집광형태양광발전시스템은 태양의 고도와 방위각에 따라 에너지량 차이가 크게 나타난다. 집광형 태양광발전시스템의 태양에너지 밀도를 최대화 하기 위해서는 모듈과 태양이 법선을 유지할 수 있게 하는 추적시스템이 필요하다. 본 논문은 독립형 60[W]급 집광형태양광 발전시스템을 위하여 GPS 태양광추적시스템을 설계하였고 태양추적 장치의 위치 알고리즘은 GPS를 통해 태양의 고도와 위도 좌표값 산출 하도록 하였으며, 실제 운전을 통하여 타당성을 검토하였다.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.