• Title/Summary/Keyword: CPTU data

Search Result 18, Processing Time 0.026 seconds

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground (연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh;Sung-Gyo, Chung;Hyeog-Jun, Kweon
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

Direct Application of CPTu Result for Consolidation Analysis (PCPT 소산결과를 이용한 압밀해석)

  • Kang, Beong-Joon;Cho, Sung-Hwan;Seo, Kyung-Bum;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.715-719
    • /
    • 2009
  • In this study, a method to predict the consolidation behavior of soft clays and marine clays was developed by combining the equation of Terzaghi's 1-dimensional consolidation and CPTu dissipation. The special attention was given to the consolidation anisotropy due to the difference between 1-D consolidation and radial consolidation of CPTu dissipation. The analysis combining two equations enables direct application of CPTu results. And above all it doesn't require to sample undisturbed specimens and determine consolidation coefficient which is both costly and time consuming and often contains measuring error. It is also advantageous that CPTu test can be carried out any position and any depth. Clays typically have a greater horizontal permeability, $k_h$, than vertical permeability, $k_v$, and the coefficient of consolidation in the horizontal direction is generally higher than the vertical direction. Various data of horizontal and vertical consolidation coefficient ratio were collected and analyzed to develop and verify the method.

  • PDF

Utilizing piezovibrocone in marine soils at Tauranga Harbor, New Zealand

  • Jorat, M. Ehsan;Morz, Tobias;Moon, Vicki;Kreiter, Stefan;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Piezovibrocones have been developed to evaluate the liquefaction potential of onshore soils, but have not yet been utilized to evaluate the in-situ liquefaction behavior of offshore marine and volcanoclastic sediments. Two static and vibratory CPTu (Cone Penetration Tests) were performed at Tauranga Harbor, New Zealand. The lithology is known from nearby drillholes and the influence of vibration on different types of marine soils is evaluated using the reduction ratio (RR) calculated from static and vibratory CPTu. A sediment layer with high potential for liquefaction and one with a slight reaction to cyclic loading are identified. In addition to the reduction ratio, the liquefaction potential of sediment is analyzed using classic correlations for static CPTu data, but no liquefaction potential was determined. This points to an underestimation of liquefaction potential with the classic static CPTu correlations in marine soil. Results show that piezovibrocone tests are a sensitive tool for liquefaction analysis in offshore marine and volcanoclastic soil.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea (액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가)

  • Seo, Min-Woo;Sun, Chang-Guk;Oh, Myoung-Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2009
  • Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

A Study on the Evaluation of Horizental Coefficient of Consolidation for Marine Clay by Flat DMT (DMT를 이용한 해성점토의 수평압밀계수 평가에 관한 연구)

  • Kim, Jong-Kook;Jeong, Hyeok;Chae, Young-Su;Yoon, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.619-627
    • /
    • 2008
  • In this study, through dissipation test of DMT predicted Horizontal Coefficient of Consolidation at marine clay. CPTu Dissipation test, laboratory consolidation test compared with $C_v$, through it examined application. The result, DMT calculated horizontal coefficient of consolidation by $P_2$-Log(t) method of DMT-A method and C-$\surd$t(min) method. This horizontal coefficient of consolidation calculated larger than $P_2$-Log(t) method. $P_2$-Log(t) method of DMT, Torstensson of CPTu and Houlsby & Teh(1991) appeared similar to tend. This approximate value is possible application in marine clay. It'll need to study continuously through collection of data.

  • PDF