• 제목/요약/키워드: CPT(Capacitive Wireless Power Transfer)

검색결과 4건 처리시간 0.019초

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.

전계결합 무선전력전송의 수신부 감지 방법 (A Novel Receiver Sensing Scheme for Capacitive Power Transfer System)

  • 정채호;임휘열;최성진
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

An Interference Isolation Method for Wireless Power and Signal Parallel Transmissions on CPT Systems

  • Zhou, Wei;Su, Yu-Gang;Xie, Shi-Yun;Chen, Long;Dai, Xin;Zhao, Yu-Ming
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.305-313
    • /
    • 2017
  • A novel interference isolation method is proposed by using several designed coils in capacitive power transfer systems as isolation impedances. For each designed coil, its stray parameters such as the inter-turn capacitance, coil resistance and capacitance between the coil and the core, etc. are taken into account. An equivalent circuit model of the designed coil is established. According to this equivalent circuit, the impedance characteristic of the coil is calculated. In addition, the maximum impedance point and the corresponding excitation frequency of the coil are obtained. Based on this analysis, six designed coils are adopted to isolate the interference from power delivery. The proposed method is verified through experiments with a power carrier frequency of 1MHz and a data carrier frequency of 8.7MHz. The power and data are transferred parrallelly with a data carrier attenuation lower than -5dB and a power attenuation on the sensing resistor higher than -45dB.