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Abstract  

 

A novel interference isolation method is proposed by using several designed coils in capacitive power transfer systems as 
isolation impedances. For each designed coil, its stray parameters such as the inter-turn capacitance, coil resistance and 
capacitance between the coil and the core, etc. are taken into account. An equivalent circuit model of the designed coil is 
established. According to this equivalent circuit, the impedance characteristic of the coil is calculated. In addition, the maximum 
impedance point and the corresponding excitation frequency of the coil are obtained. Based on this analysis, six designed coils 
are adopted to isolate the interference from power delivery. The proposed method is verified through experiments with a power 
carrier frequency of 1MHz and a data carrier frequency of 8.7MHz. The power and data are transferred parrallelly with a data 
carrier attenuation lower than -5dB and a power attenuation on the sensing resistor higher than -45dB. 
 
Key words: Capacitive power transfer (CPT), Coil stray parameters, Interference isolation, Wireless power and signal parallel 
transmission 
 

I. INTRODUCTION 

In recent years, wireless power transfer (WPT) 
technologies have been widely adopted in practical 
applications as a solution for power transfer without a direct 
wire connection [1]-[4]. As a kind of transmission mode, 
capacitive power transfer (CPT, or capacitively coupled 
power transfer, CCPT) technologies [5], [6] are attracting a 
growing number of researchers due to their advantages such 
as design flexibility, reduced volume and weight of the 
coupling structure and metal penetration capability [7], [8] 
because capacitive plates are utilized as the coupling structure. 
CPT technologies have been used in rotating devices [9], 
mobile robots [10], biological implants [11], cell phones [12], 
and electric vehicles [13], [14]. 

Many CPT studies have focused on improving the power 
transfer efficiency and the power level of the whole CPT 
system [15]-[17]. To achieve both of the above targets, 
wireless data transmission between the power transmitter and 

receiver is brought into CPT systems which forms a 
combined system referred to as a wireless power and signal 
parallel transmission (WPST) system. In addition, this system 
can also be used in certain applications such as medical 
implants and consumer electronics, which need to transfer 
sensor data, control signals, etc. 

Generally, the transmission methods of a WPST system 
include the dual channel method [18] and the shared channel 
method [19], which are shown in Fig. 1. For the second 
method, the power carrier and data carrier transfer in a single 
shared channel, and only one coupling structure is set in the 
system which can simplify the system complexity and 
enhance the flexibility of the coupling structure. However, in 
a WPST system with a shared channel, the power carrier 
from the input Port A seriously interferes with the data 
channel. Therefore, it is important to isolate the crosstalk 
between the power and data carriers. In the existing studies, 
some isolation strategies have been adopted. Wu, et al. 
isolated interference by reducing the signal coupling 
inductances and magnifying the data carrier, while more 
power is consumed by the data transmission [20]. Hairi, et al. 
tried to send and receive data during the inverter 
non-switching period in synchronization with the rising or  
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Fig. 1. Two transmission methods of the WPST system include: 
(a) the dual channels method and (b) the shared channel method. 

 
falling edge of the inverter voltage to avoid the power 
interference on the data link [21]. However, the maximum 
baud rate was seriously limited by the switching frequency of 
the inverter. 

In this paper, a novel interference isolation method is 
proposed by using several designed coils in a CPT system as 
isolation impedances. For each designed coil, the stray 
parameters such as the inter-turn capacitance, coil resistance, 
capacitance between the coil and the core, etc. are taken into 
account and an equivalent circuit model of the designed coils 
is established. According to the equivalent circuit, the 
maximum impedance point of each coil and the maximum 
impedance frequency (MIF) are calculated. Based on the 
characteristics of the equivalent circuit model, six designed 
coils are adopted to isolate the interference from power 
delivery. 

 

II. INTERFERENCE AND CARRIER GAIN MODELING 

Fig. 2 shows a typical topology of a CPT system. The 
full-bridge inverter transforms DC voltage Edc into a high 
frequency AC voltage which is referred to as up. The 
combination of a DC source Edc and a full-bridge inverter can 
be regarded as an AC voltage source up. Cs1 and Cs2 indicate 
the equivalent capacitors of two pairs of capacitive coupling 
plates. The tuning inductors Lst and Lsr are both connected in 
series with Cs1 and Cs2 to compensate the reactive power  
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Power transmitter Power receiver  
Fig. 2. Typical topology of the CPT system. 

 
circulation in the resonant circuit. A full-bridge rectifier with 
four diodes D1-D4 transforms AC voltage into a DC voltage 
to directly supply the load RL. An equivalent AC resistance 
Rac is used to replace the rectifier, filter capacitor Cd, and load 
RL to simplify the analysis [22]. 

A WPST equivalent circuit based on a typical CPT 
topology is shown in Fig. 3. A couple of data branches are 
connected in parallel to the capacitive plates on both sides. 
Each data branch has two operation modes, the transmitter 
mode and the receiver mode, which are controlled by the 
switches St and Sr. Under the transmitter mode, the carrier 
generator and the data modulation circuit are switched on and 
form a data source utd or urd to transmit data. Under the 
receiver mode, a sensing resistor Rtd or Rrd is connected to the 
main circuit to receive data. From Fig. 3(a), two serious 
interference voltages uAB and uCD are added directly to the 
data sensing resistors Rtd and Rrd if there are no isolation 
modules. Under this condition, the received data will be 
easily lost in the power interference, even if there is a big 
difference between the frequencies of the power carrier and 
the data carrier. Therefore, a WPST system with four 
isolation impedances is proposed and shown in Fig. 3(b) to 
separate the power carrier and data carrier. 

In order to prevent serious power interference, the 
impedances Zt2 and Zr2 have to be large enough under the 
operating frequency of the power transmission. In addition, a 
high impedance can also prevent power loss on the data 
branches to maintain the power efficiency. Conversely, Zt2 
and Zr2 have to be small enough under the frequency of the 
data carrier to ensure that the data can be transferred through 
them without a serious attenuation. The impedances Zt1 and 
Zr1 are designed based on the inductors Lst and Lsr in the 
original CPT circuit. The impedances Zt1 and Zr1 have to be 
set large enough under the data carrier frequency to ensure 
that the data carrier can transfer across the coupling 
capacitors as much as possible to increase the voltage gain of 
the data carrier in the data channel. In addition, the 
impedances of Zt1 and Zr1 compensate the reactive power 
circulation of the coupling capacitors under the power 
operating frequency. 

In order to analyze the wireless power and signal transfer  
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Fig. 3. Equivalent circuits of the WPST system with/without 
isolation modules: (a) the equivalent circuit of WPST system 
without isolation impedances and (b) the equivalent circuit of 
WPST system with isolation impedances. 

 
characteristics, five voltage gain functions are derived and 
shown in the Appendix as Eq.(14) to Eq.(18). Firstly, the 
functions Gint-tr and Gint-rt in Eq.(14) and Eq.(15), which 
represent the voltage gains from the input power source up to 
the noise voltage on the sensing resistors Rrd and Rtd, are 
obtained to ensure that the data carrier can be recognized 
from the power interference. Moreover, in order to clearly 
distinguish data bit 0 and data bit 1 in the ASK demodulation, 
the functions Ggain-tr and Ggain-rt in Eq.(16) and Eq.(17), which 
indicate the data carrier gains from the two data sources to 
the received voltages on the sensing resistors, are given. Here 
the function Ggain-tr means the data carrier gain when the data 
transfers forward from the power transmitter to the receiver, 
and the function Ggain-rt presents the carrier gain in the 
backward condition. To maintain the power transfer capacity 
of a CPT system with two signal branches, the function Gpower 
in Eq.(18) is derived to express the power voltage gain from 
the input power source up to the load Rac. 

 

III. COILS EQUIVALENT CIRCUIT AND MODELING 

To transfer data with a high carrier voltage gain and a low 
power interference, four impedance modules Zt1, Zt2, Zr1 and 
Zr2 should be replaced by some designed coils. The 
impedances of these coils are calculated in this section. 

A. Coil Parameters 

For the designed coils, each turn of the winding can be  
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Fig. 4. Equivalent circuit diagram of the designed coil with stray 
parameters. 

 
regarded as a rectangular ring conductor with a wire radius of 
r and ring side lengths of a and b. The self-inductance Lt of 
each turn of the windings can be indicated as: 

 
   

 32 2
ln ln 2

4t
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L a b d

r a b r b d



 

       
 (1) 

where 2 2d a b  , μ represents the permeability of the 

core. Moreover, because the magnetic circuit in the ring core 
is closed, the coefficient of the mutual inductance between 
each turn is nearly 1. Therefore, the mutual inductance Mij 
between the ith and jth turns is equal to the self-inductor of a 
single turn Lt. For the nth turn, the sum of the mutual 
inductances between all of the other turns with the nth turn 
and the self-inductance of the nth turn is equivalent to a 
current-controlled voltage source ult which is shown in Fig. 4. 
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Beside the self-inductance, the other main stray parameters 

considered in this paper include the inter-turn capacitance, 

the capacitance between the coil and the core, the coil 

resistance and the core resistance.  

Fig. 4 shows an equivalent circuit diagram of the designed 

coil considering these stray parameters. 

The distributed stray capacitance from each turn of the 
windings to the core is approximated as a circular conductor 
at a distance of h over the ground plane as: 
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where ε0 represents the permittivity of vacuum. Moreover, the 
inter-turn capacitance between adjacent windings is 
approximately equivalent to two ring conductors with a 
distance of 2d and is expressed as: 
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Generally, compared with the stray capacitance Cw, the 
inter-turn capacitance Ct can be ignored due to the relatively 
large d. 

The internal resistance of the designed coil windings is 
modeled as a circular cross-sectional wire resistance 
including the skin effect, which is given as below: 
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where ρ indicates the resistivity, L is the wire length of a 
single winding, S represents the effective area of the current 
flow, and ∆r means the skin depth. The core resistance Rc is 
determined by the magnetic core material, and the resistance 
value is given by actual measurement. 

B. Equivalent Model and the Coil Impedance 

According to the equivalent circuit of a single winding in  
Fig. 4, the equivalent circuit of the designed coil can be 

established by cascading all of the equivalent circuits of each 
winding. Then the model of the designed coil is given by 
setting up the Kirchhoff’s Voltage Law (KVL) equation 
group with 2N+1 equations and the Kirchhoff’s current law 
(KCL) equation group with 2N-1 equations as below: 
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where irtn, ictn, icwn and ircn represent the current of Rt, Ct, Cw 

and Rc of the nth winding of the coil, respectively. uin and iin 

are expressed as the input voltage and current of the coils. N 

is the number of coil turns. Zct and Zcw represent the 

impedances of the capacitances Ct and Cw, respectively. 

To obtain a convenient calculation, the KVL and KCL 
equation groups with 4N equations are transformed into a 
4N-order matrix function as below: 
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where P=[1, N]∈Յ, Q=[1, N]∈Յ, S=[1, N]∈Յ, T=[1, N]∈Յ, 

and Յ presents the set of the integer. The designed coil 

impedances can be calculated according to Eq.(8) as follows: 

    11in
coil

in

u
Z

i

  Y A BD C  (8) 

where Y=(1, 0, 0, ⋯, 0, 0)1×4N . 

 

IV. FREQUENCY-DOMAIN ANALYSIS OF THE COILS 
AND INTERFERENCE ISOLATION 

According to the modeling of the designed coil, the 
impedance of the coil is accurately calculated. From Section 
III, the coil impedance is influenced by the coil turn number 
N, the operating frequency ω, and the coil geometric 
parameters such as a and b, etc. 

A. Frequency-Domain Analysis of the Coils 

The geometric parameters of the coil in Section III include 
the ring side lengths a and b, the wire radius r, the turn 
distance d, and the distance between windings and the core h. 
To simplify the analysis, a (assume a=b), d, and h are set as 
constants by choosing a specific wire and winding method. 
Only the parameter r is considered as a variable in the 
following analysis. Therefore, the coil impedance can be 
expressed as a function with the variables a, N, and f as in 
Zcoil(a, N, f). 

Fig. 5 shows the impedance characteristic of the designed 
coil in the frequency domain. Due to stray parameters, the 
coil impedance appears in the inductive reactance in the low 
frequency region and in the capacitive reactance in the high 
frequency region. The total impedance achieves its peak 
value on the demarcation point of these two regions and the 
frequency of the demarcation point is defined as the 
maximum impedance frequency (MIF). Fig. 6 shows a 
contour plot of the MIF, where the side length of core a 
varies from 0.3cm-2cm and the coil turn number variation 
ranges from 5 to 95. From Fig. 6, it can be seen that the MIFs 
can be achieved from 1MHz to 9MHz by setting the core 
radius r and the turn number N in a specific region. The 
maximum impedance in the MIF point can be designed to 
isolate the power interference and to keep the data carrier 
transferring through data branches. 
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B. Interference Isolation 

For a power transfer with a low operating angular 
frequency ωp, the impedances Zt1 and Zr1 can be expressed as: 
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 
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where jωpLt1 and jωpLr1 represent the imaginary parts of Zt1 
and Zr1, and Rt1 and Rr1 indicate the real parts. To compensate 
for the big reactance of the capacitive coupling structure Cs1 
and Cs2, the following equation should be satisfied: 
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L L
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In addition, to keep the data carrier transferring through 
data branches, the MIF points of the impedances Zt1 and Zr1 
should be set on the data carrier frequency as: 

    1 1,
2 2

d d
t rMIF Z MIF Z

 
 

   (11) 

For each of the impedance modules Zt2 and Zr2, to isolate 
the power interference, a coil whose MIF point is set on the 
power carrier angular frequency ωp is adopted. It is obvious 
that the impedance of this coil is a capacitive reactance at the 
data carrier frequency according to Fig. 5. Therefore, another 
coil connected in series with the former coil is needed. The 
MIF point of the second coil is set to a frequency that is 
higher than ωp so that its impedance presents an inductive 
reactance at the frequency ωp, which compensates the 
capacitive reactance at a high data carrier angular frequency  

TABLE I 
THE INHERENT PARAMETERS OF COILS 

Parameters Values Parameters Values 
ε0 8. 85×10-12F/m h 1.1mm 
r 1mm d 5mm 
ρ 1.75×10-8Ωm μ0μr 400π×10-8H/m

 
and enhances the data carrier gain. As a result, the 
impedances Zt2 and Zr2 are divided between the two coils, 
respectively. Therefore, the impedances Zt2 and Zr2 can be 
expressed as: 
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where 1/jωdCr2 and 1/jωdCt2 represent the capacitive 
reactance of Zt2 and Zr2, and jωdLr2 and jωdLt2 indicate the 
inductive reactance of Zt2 and Zr2. In addition, the impedances 
should satisfy the following constraints: 
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V. SIMULATION AND EXPERIMENTS 

In order to verify the above theoretical analysis, 
simulations and experiments are conducted in MATLAB 
based on the circuit shown in Fig. 2 and Fig. 3(b). The power 
and data carrier frequencies are set to 1MHz and 9MHz, 
respectively. The geometrical parameters of the designed 
coils are designed according to the theory in Section IV. 

A. Coil Impedance Characteristic 

The inherent parameters of the designed coils and some of 
the physical constants are given by Table I. 

According to the analysis in Section IV, the side length of 
the core section and the coil turns are set as (a=6mm, N=11), 
(a=3mm, N=16) and (a=20mm, N=32), respectively. The 
impedance value for each of the coils is calculated and given 
in Table II under both the power and data carrier frequencies 
operating conditions. 

Fig. 7 shows the impedance characteristic curves of the 
coils in the frequency domain over the operating frequency 
range from 0MHz to 15MHz. From Fig. 7, it can be seen that 
the MIF of coil Z1 is set to fd which can be used to keep the 
data carrier transferring in the data branches. In addition, the 
MIF of Z2

(c) is around fp, which isolates the power 
interference. Z2

(L) is adopted to compensate the impedances of 
Z2

(c) under the fd condition. 

B. Interference Isolation Characteristic 

The circuit parameters, not including the coils analyzed 
above, are given in Table III. Moreover, the curves of the 
gain functions established in Section II to estimate the power 
interference on the signal transmission and the voltage gain  
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TABLE II 
THE GEOMETRICAL PARAMETERS AND THE IMPEDANCE VALUES OF COILS 

Zt1,Zr1(a=6mm, N=8) Zt2
(L), Zr2

(L) (a=6mm, N=5) Zt2
(C), Zr2

(C) (a=20mm, N=32) 

Power ωp Data ωd Power ωp Data ωd Power ωp Data ωd 

Lt1 39.5μH Ct1 0.5pF Lt2 15.3μH Lt2 43.3μH Ct2 1.2pF Ct2 7.3pF 

Rt1 0.8Ω Rt1 26.3kΩ Rt2
(L) 0.2Ω Rt2

(L) 120.2Ω Rt2
(L) 226.7kΩ Rt2

(L) 19.4Ω 

Lr1 39.5μH Cr1 0.5pF Lr2 15.3μH Lr2 43.3μH Cr2 1.2pF Ct2 7.3pF 

Rr1 0.8Ω Rr1 26.3kΩ Rr2
(L) 0.2Ω Rr2

(L) 120.2Ω Rt2
(L) 226.7kΩ Rt2

(L) 19.4Ω 

 
TABLE III 

CIRCUIT PARAMETERS BESIDE THE COILS 

Parameters Values Parameters Values 
Cs1 650pF Cs2 650pF 
Rtd 200Ω Rrd 200Ω 
fd 9MHz fp 1MHz 

Rac 100Ω up(Vpp) 200V 
ud(Vpp) 10V   
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Fig. 7. Coils impedance characteristic in frequency domain. 
 

of the data carrier are illustrated in Fig. 8. The measured 
voltage gain values in the experiments are shown in Fig. 8 as 
circles at each of the measured frequencies. 

In Fig. 8(a), the function curves of 20lgGint-tr and 20lgGint-rt 
show that the power attenuation from the power input port to 
the data sensing resistors Rtd and Rrd are both around -45dB 
under the fp condition. Although the experimental values  

Frequency / MHz

Frequency / MHz
20

lg
G

in
t-

tr
20

lg
G

in
t-

rt
 

(a) 
 

a

Frequency / MHz

Frequency / MHz

20
lg

G
ga

in
-t

r
20

lg
G

ga
in

-r
t

 
(b) 

 

Frequency / MHz

20
lg

G
po

w
er

 
(c) 

 

Fig. 8. Simulated and experimental results of the proposed 
method. 
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deviate slightly from the simulated curves, the power 
attenuation level on fp is still acceptable. In Fig. 8(b), the 
function curves of 20lgGgain-tr and 20lgGgain-rt show that the 
data carrier attenuation from the data input port to the data 
sensing resistors Rtd and Rrd are both smaller than -5dB under 
the fd condition which is practical for data transmission. Here, 
the peaks of these two function curves in practical 
experiments appear at 8.7MHz, which is pretty close to the 
designed frequency 9MHz. In Fig. 8(c), the power attenuation 
from the power input port to the load is nearly 0dB. The 
experimental results have some small differences when 
compared with the simulations as a result of the measurement 
errors of actual geometric dimensioning and the parameter 
changes due to temperature drift, etc. Therefore, the practical 
data carrier frequency and the voltage gains of the power and 
crosstalk are slightly different from the theoretical values. 
The experimental results are consistent with simulations. 

 

VI. CONCLUSION 

In this paper, a novel interference isolation method is 
proposed by using several designed coils in a capacitive 
power transfer system as isolation impedances. For each 
designed coil, its stray parameters such as the inter-turn 
capacitance, the coil resistance and the capacitance between 

the coil and core, etc. are taken into account. According to the 
equivalent circuit of the designed coils, the impedance 
characteristics of these coils are given. In addition, the 
maximum impedance point and the corresponding excitation 
frequency of the coil are obtained. Based on the above 
analysis, six designed coils are adopted to isolate the 
interference from power delivery. The power and data 
carriers with frequencies of 1MHz and 8.7MHz are 
transferred in parallel. Moreover, the data carrier attenuation 
is lower than -5dB, and the power attenuation on the sensing 
resistor is higher than -45dB. 

 

APPENDIX 

To analyze the power and data transfer characteristics of 
the proposed WPST system, five corresponding functions are 
shown as Eq.(14) to Eq.(18). 
where Cs = Cs1Cs2/(Cs1+Cs2), and ωp and ωd represent the 
angular frequencies of the power carrier and data carrier, 

respectively. The variable  
xZ   indicates the impedance of 

module x under operating frequencies of ω, which are marked 
as a superscript. All of the equations from Eq.(14) to Eq.(18) 
are obtained based on the Fundamental Harmonic Analysis 
(FHA) method according to the circuit in Fig. 3(b). 
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