• Title/Summary/Keyword: CP-gene sequence

Search Result 93, Processing Time 0.019 seconds

Development of PCR-based markers for selecting plastid genotypes of Solanum hjertingii (Solanum hjertingii 색소체 유전자형 선발을 위한 PCR 기반 분자마커 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.34-44
    • /
    • 2023
  • The tetraploid Solanum hjertingii, a wild tuber-bearing species from Mexico is a relative of potato, S. tuberosum. The species has been identified as a potential source of resistance to blackening for potato breeding. It does not exhibit enzymatic browning nor blackspot which are physiological disorders. However, due to their sexual incompatibility, somatic hybridization between S. hjertingii and S. tuberosum must be used to introduce various traits from this wild species into potato. After somatic hybridization, molecular markers are essential for selecting fusion products. In this study, the chloroplast genome of S. hjertingii was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop specific markers for S. hjertingii. The chloroplast genome has a total sequence length of 155,545 bp, and its size, gene content, order and orientation are similar to those of the other Solanum species. Phylogenic analysis including 15 other Solanaceae species grouped S. hjertingii with S. demissum, S. hougasii, and S. stoloniferum. After detailed comparisons of the chloroplast genome sequence with eight other Solanum species, we identified one InDel and seven SNPs specific to S. hjertingii. Based on these, five PCR-based markers were developed for discriminating S. hjertingii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary aspects of Solanum species and accelerating breeding using S. hjertingii.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

First Report of the Virus Diseases in Victory Onion (Allium victorialis var. platyphyllum) (산마늘(Allium victorialis var. platyphyllum)에서 바이러스병의 최초보고)

  • Park, Seok-Jin;Nam, Moon;Kim, Jeong-Seon;Lee, Yeong-Hoon;Lee, Jae-Bong;Kim, Min-Kyeong;Lee, Jun-Seong;Choi, Hong-Soo;Kim, Jeong-Soo;Moon, Jae-Sun;Kim, Hong-Gi;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.66-74
    • /
    • 2011
  • In 2005, a survey was conducted to identify virus diseases on victory onion, Allium victorialis var. platyphyllum grown in Ulleung island located in the East Sea. A total of 61 samples were collected from victory onion in the neighborhood of Seonginbong. The identification of viruses from the samples were carried out by electron microscopy and RT-PCR using primers species specific to GCLV, LYSV, SLV, OYDV and genus specific to Allexivirus, respectively. From sixty-one samples, filamentous rod particles (600-900 nm) were detected from four victory onion samples in EM, three samples containing SLV and one sample containing both SLV and Allexivirus in RT-PCR analysis, respectively. Victory onions naturally infected by the viruses were asymptomatic apparently. The viruses detected by RT-PCR were further characterized by the nucleotide sequence analysis of the coat protein region. Three isolates of SLV showed approximately 99% identities in the nucleotide and amino acid sequences, suggesting that they were likely to be the same strain. On the other hand, they showed approximately 75.7~83.7% identities in the nucleotide and 89.2~97.0% in amino acid sequences compared with the previously reported SLV isolates in Allium. The CP gene of the Allexivirus showed approximately 99.2% nucleotide identities and 98.8% amino acid identities with Garlic virus A. However, there was relatively low homology ranging from 60.6% to 81.5% compared with other Allexiviruses (GarV-C, GarV-E, GarV-X, GMbMV, and Shal-X). These data suggested that two viruses, SLV and GarV-A identified from victory onion, are named SLV-Ulleungdo and GarV-A-Ulleungdo, respectively. This is the first report of viruses infecting victory onion.