• 제목/요약/키워드: COX1 gene

검색결과 270건 처리시간 0.03초

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • 제23권2호
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성 (DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection)

  • 전경화;원용성;신은영;조현민;임명구;진형민;박우배
    • Journal of Gastric Cancer
    • /
    • 제6권4호
    • /
    • pp.227-236
    • /
    • 2006
  • 목적: 유전자 메틸화는 유전자의 서열에 영향을 주지 않으면서 유전자의 발현을 억제하고 세포분열 후 그대로 보존되는 후성적 변화이다. 위암조직과 정상위조직에서 hMLH1, p16, p14, COX-2, MGMT, E-cadherin 유전자와 MINT (MINT1, 2, 12, 25, 31)의 메틸화 상태를 검사하여 위암의 발생 과정에서의 작용과 CIMP 및 Helicobacter pylori균 감염을 포함한 임상병리학적인자와의 연관성을 알아보고자 하였다. 대상 및 방법: 위암과 정상위 신선 동결 조직 각각 36예를 대상으로 MSP (methylation-specific PCR)방법을 이용하여 메틸화 상태를 분석하였고 CIMP의 분석은 MINT1, MINT2, MINT12, MINT25, MINT31의 5개 marker를 대상으로 시행하였다. Helicobacter pylori균 감염여부는 Warthin-Starry silver 염색을 통하여 분류하였다. 결과: 위암 관련 유전자인 p14, p16, MGMT, COX-2, E-cadherin, hMLH1의 메틸화는 각각 14예(38.9%), 13예(36.1%), 8예(22.2%), 10예(27.8%), 21예(58.3%), 6예(16.7%)였다. MINT1과 MINT25의 메틸화는 위암조직에서 정상위조직에서보다 통계학적으로 유의하게 높게 관찰되었다. CIMP 양성률은 위암조직에서 44.4%로 높게 나타났으며 CIMP-H 위암은 환자의 연령과 종양크기와 연관이 있었다. CIMP 양성 위암은 p16 유전자의 메틸화와 연관이 있었고 p16 유전자의 메틸화는 조직학적으로 저분화, 미만형, 궤양형성하는 위암에서 낮게 나타났다. MINT1의 메틸화는 Helicobacter pylori균과 연관성이 있었다. 결론: 위암에서 hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT (MINT1, 2, 12, 25, 31)의 불활성화에 DNA 메틸화가 작용함을 알 수 있었고, Helicobacter pylori균에 의한 위암발생에 MINT1의 메틸화가 연관이 있음을 알 수 있었다.

  • PDF

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Inhibitory Effect of Farfarae Flos Water Extract on COX-2, iNOS Expression and Nitric Oxide Production in lipopolysaccharide - activated RAW 264.7 cells

  • Yoon Tae Gyoung;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu;Kim Sang Chan
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.908-913
    • /
    • 2004
  • Farfrae Flos has been clinically used for the treatment of asthma in traditional oriental medicine. There is lack of studies regarding the effects of Farfrae Flos on the immunological activities. The present study was conducted to evaluate the effect of Farfrae Flos on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, Farfrae Flos water extract inhibited nitric oxide production in a dose-dependent manner and abrogated inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Farfrae Flos water extract did not affect on cell viability. To investigate the mechanism by which Farfrae Flos water extract inhibits iNOS and COX-2 gene expression, we examined the on the phospholylation of inhibitor κBα and production of TNF-α, IL-1β and IL-6. Results provided evidence that Farfrae Flos inhibited the production of interleukin-1β (IL-1β) and the activation of phospholylation of inhibitor κBα in Raw 264.7 cells activated with LPS. These findings suggest that Farfrae Flos can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

만성 알코올과 철분의 과잉 섭취가 흰쥐의 간 세포 미토콘드리아 DNA 손상에 미치는 영향 (Effects of chronic alcohol and excessive iron intake on mitochondrial DNA damage in the rat liver)

  • 박정은;이정란;정자용
    • Journal of Nutrition and Health
    • /
    • 제48권5호
    • /
    • pp.390-397
    • /
    • 2015
  • 본 연구에서는 Sprague-Dawley 종 랫트 수컷을 대조군, EtOH군, Fe군, EtOH + Fe군으로 나누어, 알코올과 철분을 액상 사료로 8주간 공급한 후, 간 조직과 간 세포 mtDNA의 손상 정도를 알아보았다. EtOH + Fe군은 대조군, EtOH군, Fe군의 다른 세 군에 비해 혈청 ALT와 혈청 AST 수치가 가장 유의적으로 높았으며, 간 조직 검사의 결과에서도 다수의 지방구, 염증성 세포 침입 및 조직의 괴사가 관찰되는 등 가장 심한 간 손상이 확인되었다. DNA 손상 여부를 긴 영역 PCR을 사용하여 분석한 결과, 만성적인 알코올과 철분에 의한 노출은 간 세포의 mtDNA 손상을 유발하는 것으로 나타났으며, 핵 DNA에는 영향을 미치지 않았다. 또한 미토콘드리아의 호흡에 관여하는 Cox1과 Nd4 유전자 발현 정도를 real-time PCR으로 분석한 결과, 알코올 또는 철분은 간 세포의 Cox1 mRNA와 Nd4 mRNA 수준을 유의적으로 낮추는 것으로 나타났다. 이상의 결과는 만성 알코올 또는 과잉의 철분에 의한 간 손상에 mtDNA 손상 및 미토콘드리아 기능 저하가 관여함을 제시한다.

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Preliminary study on the effect of inflamed TMJ synovial fluid on the intracellular calcium concentration and differential expression of iNOS and COX-2 in human immortalized chondrocyte C28/I2

  • Choi, Eun-Ah;Lee, Dong-Geun;Chae, Chang-Hoon;Chang, Young-Il;Park, Young-Ju;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.36-41
    • /
    • 2006
  • Objective. The objective of this study was to examine the hypothesis that inflammatory synovial fluid from TMJ internal derangement initiates a transient increase in intracellular calcium concentration ([$Ca^{2+}$]i) in chondrocytes and the induced Ca2+ signaling affects iNOS/COX-2 gene expression patterns following exposure to inflamed synovial fluid. Materials and Methods. Two female adult patients with symptoms of TMD who agreed to participate in the study were selected for this study. Immortalized human juvenile costal chondrocyte C-28/I2 was grown to 80% confluency and synovial fluids from two patients were added respectively to culture media for 24 hours at the concentration of 100ng/10ml. Confocal laser scanning microscope (CLSM) was used to examine changes of intracellular calcium concentration ([$Ca^{2+}$]i). RT-PCR was performed to identify the expression profile of IL-1${\alpha}$, iNOS, COX-2. Results. Increased [$Ca^{2+}$]i was observed in chondrocytes subjected to inflamed synovial fluid compared to control cultures and in respective cultures exposed to inflamed synovial fluids from each patient, IL-1${\beta}$, COX-2 mRNA were detected. However, in neither case iNOS mRNA was expressed. IL-1${\alpha}$, COX-2, and iNOS mRNA were expressed in control culture. Conclusion. Our results show that immortalized chondrocytes cultured with inflamed synovial fluids from patients diagnosed as disc displacement without reduction and limitation in mouth opening showed increased calcium concentration and expression of COX-2 while inhibiting the production of iNOS, which in turn could adversely affect the chondrocytes in at least short term by hindering physiologic role of NO against inflammatory cascades. These findings suggest that inflamed synovial fluid may differentially regulate the transcriptomes of relevant inflammatory mediators, especially iNOS/COX-2 axis in chondrocytes through adjusting calcium transients.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • ;;;;;윤형선
    • 대한의생명과학회지
    • /
    • 제16권1호
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Gene Expression According to Electromyostimulation after Atrophy Conditions and Muscle Atrophy in Skeletal Muscle

  • Park, Chang-Eun
    • 대한의생명과학회지
    • /
    • 제18권1호
    • /
    • pp.49-55
    • /
    • 2012
  • Numerous biochemical molecules have been implicated in the development of muscular atrophy. However, control mechanisms associated with muscular disease are not clear. The present study was conducted to investigate gene expression profiles of rat muscle during the denervation to atrophy transition processes. We isolated total RNA from rats suffering from partial muscle atrophy (P) and electromyostimulated atrophy (PE) and synthesized cDNA using annealing control primers. Using 20 ACPs for PCR, we cloned 18 DEGs using TOPO TA cloning vector, sequenced, and analyzed their identities using BLAST search. Sequences of 14 clones significantly matched database entries, while one clone was ESTs, and 3 clones were unidentified. Different expression profiles of selected DEGs between P and PE were confirmed. The troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1 and Commd3 were highly expressed genes in the P and PE groups, while Krox-25 and TCOX2 were only expressed genes in the P group, the Sv2b and Marcks were only expressed genes in PE group. also, Cox8h was highly expressed genes in PE groups. The ASPH, ND1, and ARPL1 were highly expressed genes in the P and PE groups. List of genes obtained from the present study might provide an insight for the study of mechanism regulating muscle atrophy and electrostimulated muscle atrophy transitions. These data suggest that troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1, and Commd3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.