• Title/Summary/Keyword: COX1 gene

Search Result 270, Processing Time 0.033 seconds

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection (위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성)

  • Jun, Kyong-Hwa;Won, Yong-Sung;Shin, Eun-Young;Cho, Hyun-Min;Im, Myoung-Goo;Chin, Hyung-Min;Park, Woo-Bae
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.227-236
    • /
    • 2006
  • Purpose: Methylation of gene regulatory elements plays an important role in gene inactivation without genetic alteration. Gastric cancer is one of the tumors that exhibit a high frequency of CpG island hypermethylation. The purpose of this study was to investigate the occurrence of CpG island hypermethylation in gastric carcinoma in relation to H. pylori infection, CIMP and clincopathologic variables. Materials and Methods: We investigated the promoter methylation Status of six genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin) and CIMP in 36 gastric carcinoma tissues as well as in nontumor tissues. CIMP status was investigated by examining the methylation status of MINT 1, 2, 12, 25 and 31. The methylation status of the promoter was examined by methylation-specific PCR (MSP) and H. pylori infection was examined by histological diagnosis after staining with Warthin-Starry silver. Results: Among the 36 gastric carcinoma tissues, DNA hypermethylation was detected in the following frequencies: 14 (38.9%) for p14, 13 (36.1%) for p16, 8 (22.2%) for MGMT, 10 (27.8%) for COX-2, 21 (58.3%) for E-cadherin, and 6 (16.7%) for hMLH1. The frequencies for MINT1 and MINT25 hypermethylation were significantly higher in tumor tissues than in nontumor tissues. 16 (44.4%) of the 36 gastric carcinoma tissues were positive for the CIMP CIMP-H tumors were associated with older patients and larger tumor size than CIMP-L tumors. We found a significant association between the presence of the CIMP and hypermethylation of p16. Hypermethylation of p16 and MINT2 were significantly different when compared by age. MINT1 gene methylation was significantly associated with H. pylori infection (P=0.004). Conclusion: Our results suggest that aberrant hypermethylation of multiple tumor related genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT1, 2, 12, 25, 31) occurs frequently in gastric carcinoma tissues. The hypermethylation of MINT1 was significantly higher in the tumor tissues and was associated with H. pylori infection.

  • PDF

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Inhibitory Effect of Farfarae Flos Water Extract on COX-2, iNOS Expression and Nitric Oxide Production in lipopolysaccharide - activated RAW 264.7 cells

  • Yoon Tae Gyoung;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu;Kim Sang Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.908-913
    • /
    • 2004
  • Farfrae Flos has been clinically used for the treatment of asthma in traditional oriental medicine. There is lack of studies regarding the effects of Farfrae Flos on the immunological activities. The present study was conducted to evaluate the effect of Farfrae Flos on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, Farfrae Flos water extract inhibited nitric oxide production in a dose-dependent manner and abrogated inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Farfrae Flos water extract did not affect on cell viability. To investigate the mechanism by which Farfrae Flos water extract inhibits iNOS and COX-2 gene expression, we examined the on the phospholylation of inhibitor κBα and production of TNF-α, IL-1β and IL-6. Results provided evidence that Farfrae Flos inhibited the production of interleukin-1β (IL-1β) and the activation of phospholylation of inhibitor κBα in Raw 264.7 cells activated with LPS. These findings suggest that Farfrae Flos can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

Effects of chronic alcohol and excessive iron intake on mitochondrial DNA damage in the rat liver (만성 알코올과 철분의 과잉 섭취가 흰쥐의 간 세포 미토콘드리아 DNA 손상에 미치는 영향)

  • Park, Jung-Eun;Lee, Jeong-Ran;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.390-397
    • /
    • 2015
  • Purpose: In this study, we investigated the effects of chronic alcohol and excessive iron intake on mitochondrial DNA (mtDNA) damage and the progression of alcoholic liver injury in rats. Methods: Twenty-four Sprague-Dawley male rats were divided into four groups (Control, EtOH, Fe, and EtOH + Fe), and fed either control or ethanol (36% of total calories) liquid diet with or without 0.6% carbonyl iron for eight weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, liver malondialdehyde concentrations were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. The integrity of the hepatic mtDNA and nuclear DNA was measured by long-range PCR. The gene expression levels of cytochrome c oxidase subunit 1 (Cox1) and NADH dehydrogenase subunit 4 (Nd4) were examined by real-time PCR. Results: Serum ALT and AST activities were significantly higher in the EtOH+Fe group, as compared to the Control group. Similarly, among four groups, liver histology showed the most severe lipid accumulation, inflammation, and necrosis in the EtOH + Fe group. PCR amplification of near-full-length (15.9 kb) mtDNA showed more than 50% loss of full-length product in the liver of the EtOH + Fe group, whereas amounts of PCR products of a nuclear DNA were unaffected. In addition, the changes in the mtDNA integrity showed correlation with reductions in the mRNA levels of mitochondrial gene Cox1 and Nd4. Conclusion: Our data suggested that the liver injury associated with excessive iron and alcohol intake involved mtDNA damage and corresponding mitochondrial dysfunction.

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Preliminary study on the effect of inflamed TMJ synovial fluid on the intracellular calcium concentration and differential expression of iNOS and COX-2 in human immortalized chondrocyte C28/I2

  • Choi, Eun-Ah;Lee, Dong-Geun;Chae, Chang-Hoon;Chang, Young-Il;Park, Young-Ju;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • Objective. The objective of this study was to examine the hypothesis that inflammatory synovial fluid from TMJ internal derangement initiates a transient increase in intracellular calcium concentration ([$Ca^{2+}$]i) in chondrocytes and the induced Ca2+ signaling affects iNOS/COX-2 gene expression patterns following exposure to inflamed synovial fluid. Materials and Methods. Two female adult patients with symptoms of TMD who agreed to participate in the study were selected for this study. Immortalized human juvenile costal chondrocyte C-28/I2 was grown to 80% confluency and synovial fluids from two patients were added respectively to culture media for 24 hours at the concentration of 100ng/10ml. Confocal laser scanning microscope (CLSM) was used to examine changes of intracellular calcium concentration ([$Ca^{2+}$]i). RT-PCR was performed to identify the expression profile of IL-1${\alpha}$, iNOS, COX-2. Results. Increased [$Ca^{2+}$]i was observed in chondrocytes subjected to inflamed synovial fluid compared to control cultures and in respective cultures exposed to inflamed synovial fluids from each patient, IL-1${\beta}$, COX-2 mRNA were detected. However, in neither case iNOS mRNA was expressed. IL-1${\alpha}$, COX-2, and iNOS mRNA were expressed in control culture. Conclusion. Our results show that immortalized chondrocytes cultured with inflamed synovial fluids from patients diagnosed as disc displacement without reduction and limitation in mouth opening showed increased calcium concentration and expression of COX-2 while inhibiting the production of iNOS, which in turn could adversely affect the chondrocytes in at least short term by hindering physiologic role of NO against inflammatory cascades. These findings suggest that inflamed synovial fluid may differentially regulate the transcriptomes of relevant inflammatory mediators, especially iNOS/COX-2 axis in chondrocytes through adjusting calcium transients.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Gene Expression According to Electromyostimulation after Atrophy Conditions and Muscle Atrophy in Skeletal Muscle

  • Park, Chang-Eun
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Numerous biochemical molecules have been implicated in the development of muscular atrophy. However, control mechanisms associated with muscular disease are not clear. The present study was conducted to investigate gene expression profiles of rat muscle during the denervation to atrophy transition processes. We isolated total RNA from rats suffering from partial muscle atrophy (P) and electromyostimulated atrophy (PE) and synthesized cDNA using annealing control primers. Using 20 ACPs for PCR, we cloned 18 DEGs using TOPO TA cloning vector, sequenced, and analyzed their identities using BLAST search. Sequences of 14 clones significantly matched database entries, while one clone was ESTs, and 3 clones were unidentified. Different expression profiles of selected DEGs between P and PE were confirmed. The troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1 and Commd3 were highly expressed genes in the P and PE groups, while Krox-25 and TCOX2 were only expressed genes in the P group, the Sv2b and Marcks were only expressed genes in PE group. also, Cox8h was highly expressed genes in PE groups. The ASPH, ND1, and ARPL1 were highly expressed genes in the P and PE groups. List of genes obtained from the present study might provide an insight for the study of mechanism regulating muscle atrophy and electrostimulated muscle atrophy transitions. These data suggest that troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1, and Commd3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.