• Title/Summary/Keyword: COX-2

Search Result 2,823, Processing Time 0.033 seconds

Synthesis and Antiinflammatory Activity of 1.5- and 4.5-Disubstituted Imidazoles

  • Tuyen, Truong-Ngoc;Sin, Kwan-Seog;Kim, Hyun-Pyo;Park, Hae-Il
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.347.4-348
    • /
    • 2002
  • Recently it has been demonstrated that selective cyclooxygenase-2 (COX-2) inhibitors retain the antiinflammatory effect but with markedly reduced GI toxicity compared to non selective inhibitors such as traditional NSAIDs. As a consequence, intense efforts have been made to develop selective COX-2 inhibtors during the last decade. Two compounds in this class. celecoxib and rofecoxib. are already in the market and are proved as potent and selective COX-2 inhibitors with much better gastric tolerance. However. there are still strong domands for a COX-2 inhibitor with improved efficacy and safety profiles. Here we report the synthesis and biological profiles of 1.5- and 4.5-disubstituted imidazole analogues as structural equivalents of cefecoxib and refecoxib. The imidazole analogues are overlapped well whth the 3D srructures of celecoxib and rofecoxib.

  • PDF

Inhibitory Effect of Probenecid on Osteoclast Formation via JNK, ROS and COX-2

  • Cheng, Mi Hyun;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.104-109
    • /
    • 2020
  • Probenecid is a representative drug used in the treatment of gout. A recent study showed that probenecid effectively inhibits oxidative stress in neural cells. In the present study, we investigated whether probenecid can affect osteoclast formation through the inhibition of reactive oxygen species (ROS) formation in RAW264.7 cells. Lipopolysaccharide (LPS)-induced ROS levels were dose-dependently reduced by probenecid. Fluorescence microscopy analysis clearly showed that probenecid inhibits the generation of ROS. Western blot analysis indicated that probenecid affects two downstream signaling molecules of ROS, cyclooxygenase 2 (COX-2) and c-Jun N-terminal kinase (JNK). These results indicate that probenecid inhibits ROS generation and exerts antiosteoclastogenic activity by inhibiting the COX-2 and JNK pathways. These results suggest that probenecid could potentially be used as a therapeutic agent to prevent bone resorption.

Synthesis of Novel 3-(H or aralkyl)-1-phenyl-5-(p-H or halo)phenyl-2-thiohydantoins as Selective COX-2 Inhibitors

  • Park, Hae-Sun;Kim, Nan-Young;Choi, Hee-Jeon;Park, Eun-Hee;park, Myung-Sook;Lee, Myung-Sook;Shin, Hea-Soon;Kwon, Soon-Kyoung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.188.3-189
    • /
    • 2003
  • Nonsteriodal antiinflammatory drugs(NSAIDs) are widely used to treat pain, fever, and inflammatory conditions including osteoarthritis. But chronic patients suffer from gastrointestinal disturbances such as discomfort, nausea, peptic ulcer and severe bleeding because NSAIDs inhibit not only COX-2 associated with anti-inflammatory activity, but also COX-l accompanied with side effects in the stomach and kidney. Therefore, in this study, we designed a new 2-thiohydantoin derivatives as selective COX-2 inhibitors is that the 5-membered heterocycle ring is substituted with two aryl groups. (omitted)

  • PDF

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells (Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과)

  • Kim, Sang-Bo;Seong, Yeong-Ae;Jang, Hee-Jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1689-1697
    • /
    • 2011
  • In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.

Characterization of anti-oxidative effects of Mori Cortex Radicis

  • Noh, Won-Ki;Park, Jin-Baek;Kim, Sung-Jin
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.271-277
    • /
    • 2010
  • We tested to determine if Mori Cortex Radicis extract has antioxidant activities and its potential mechanism of action was explored. Anti-oxidative effects were tested by measuring free radical and nitric Oxide (NO) scavenging activity, and reducing power. Since iNOS and COX-2 are important enzymes responsible for the production of free radicals in the cell, Mori Cortex Radicis extract was tested as to whether it could inhibit iNOS and COX-2 expression in LPS stimulated Raw cells. 70% methanolic extract of Mori Cortex Radicis exerted significant DPPH free radical and NO scavenging activities. In addition, the Mori Cortex Radicis extract exerted dramatic reducing power with maximal activity observed at 1 mg/ml (11-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Mori Cortex Radicis extract, suggesting it could inhibit NO production by suppressing iNOS expression. COX-2 induced by LPS was also significantly inhibited by the Mori Cortex Radicis extract. The extract contains well known antioxidant components including phenolics, flavonoids and anthocyanin at the concentration of 0.23 mg/g, 42.97 mg/g and 12.08 mg/g, respectively. These results suggest that 70% methanolic extract of Mori Cortex Radicis exerts significant anti-oxidant activity via inhibiting iNOS and COX-2 induction.

Suppression of β-catenin and Cyclooxygenase-2 Expression and Cell Proliferation in Azoxymethane-Induced Colonic Cancer in Rats by Rice Bran Phytic Acid (PA)

  • Saad, Norazalina;Esa, Norhaizan Mohd;Ithnin, Hairuszah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3093-3099
    • /
    • 2013
  • Background: Phytic acid (PA) is a polyphosphorylated carbohydrate that can be found in high amounts in most cereals, legumes, nut oil, seeds and soy beans. It has been suggested to play a significant role in inhibition of colorectal cancer. This study was conducted to investigate expression changes of ${\beta}$-catenin and cyclooxygenase-2 (COX-2) and cell proliferation in the adenoma-carcinoma sequence after treatment with rice bran PA by immunocytochemistry. Materials and Methods: Seventy-two male Sprague-Dawley rats were divided into 6 equal groups with 12 rats in each group. For cancer induction two intraperitoneal injections of azoxymethane (AOM) were given at 15 mg/kg bodyweight over a 2-weeks period. During the post initiation phase, two different concentrations of PA, 0.2% (w/v) and 0.5% (w/v) were administered in the diet. Results: Results of ${\beta}$-catenin, COX-2 expressions and cell proliferation of Ki-67 showed a significant contribution in colonic cancer progression. For ${\beta}$-catenin and COX-2 expression, there was a significant difference between groups at p<0.05. With Ki-67, there was a statistically significant lowering the proliferating index as compared to AOM alone (p<0.05). A significant positive correlation (p=0.01) was noted between COX-2 expression and proliferation. Total ${\beta}$-catenin also demonstrated a significant positive linear relationship with total COX-2 (p=0.044). Conclusions: This study indicated potential value of PA extracted from rice bran in reducing colonic cancer risk in rats.

Cadmium-induced COX-2 Expression in Cerebrovascular Endothelial Cells (카드뮴이 뇌혈관 내피세포에서의 $PGE^2$ 및 COX-2 발현에 미치는 영향)

  • Park Dong-Hyun;Kim Young-Chae;Moon Chang-Kiu;Jung Yi-Sook;Baik Eun-Joo;Moon Chang-Hyun;Lee Soo-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.275-282
    • /
    • 2006
  • In order to get insight into the mechanism of cadmium (Cd)-induced brain injury, we investigated the effects of Cd on the induction of COX-2 in bEnd.3 mouse brain endothelial cells. Cd induced COX-2 expression and $PGE_2$ release, which were attenuated by thiol-reducing antioxidant N-acetylcysteine (NAC) indicating oxidative components might contribute to these events. Indeed, Cd increased cellular reactive oxygen species (ROS) level and DNA binding activity of nuclear factor-kB (NF-kB), an oxidative stress sensitive transcription factor. Cd-induced $PGE_2$ production and COX-2 expression were significantly attenuated by Bay 11 7082, a specific inhibitor of NF-kB and by SB203580, a specific inhibitor of p38 mitogen activated protein kinase (MAPK). These data suggest that Cd induces COX-2 expression through activation of NF-kB and p38 MAPK, the oxidative stress-sensitive signaling molecules, in brain endothelial cells.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.