• 제목/요약/키워드: COV of IMEP

Search Result 24, Processing Time 0.02 seconds

A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine (직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구)

  • LEE, MINHO;KIM, KIHO;HA, JONGHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

An Investigation on Enhencing Thermal Efficiency of a Hydrogen Fueled 2 Stroke Free-piston Engine with Reverse Uni-flow Scavenging (역단류 소기방식을 갖는 2행정 프리피스톤 수소기관의 열효율 향상에 관한 연구)

  • Byun, Chang-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.299-304
    • /
    • 2011
  • A hydrogen fueled 2 stroke free-piston engine with reverse uni-flow scavenging have a advantageous structure for the backfire occurrence, but it can reduce thermal efficiency by the circuit-flow to go through a exhaust-port. In this research, varied boost pressure, SVOT and exhaust pressure are used in a 2stroke free-piston engine with hydrogen fueled for studying the possibility of increasing thermal efficiency of free-piston hydrogen engine. As a result, to increase thermal efficiency of free-piston are suitable to supply the mixture after port closed the exhaust rater than to use the scanvenging. And it was increased by the exhaust pressure, to achieve it must be used the lean-mixture at SVOT aBDC $34^{\circ}$.

Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine (Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구)

  • Gong, Ho-Jeong;Hwang, In-Goo;Ko, A-Hyun;Myung, Cha-Lee;Park, Sim-Soo;Lim, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

Lean Operation Characteristics of a Spark Ignition Engine with Reformed Gas Addition (전기점화 엔진에서 개질가스 첨가에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong;Choi, Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.170-177
    • /
    • 2006
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for a spark ignition engine. In this study, hydrogen-enriched gaseous fuels by reforming process were simulated according to their proportions of $H_2$, CO, $CO_2$ and $N_2$ gases. Pure hydrogen and two different hydrogen-enriched gaseous mixtures(A-, B-composition) were tested for their basic effects on the engine performances and emissions in a single cylinder research engine. A- and B-composition showed different results from 100% $H_2$ addition because air/fuel mixtures were more diluted by their additions. Even though the energy fraction of reformed gases was increased, combustion stabilities and lean misfire limits were not sensitively improved. It means that combustion augmentation by $H_2$ addition was offset by the charge dilution of $N_2$ and $CO_2$. In addition, the low flammability of CO gas deteriorated thermal efficiencies. CO emission was drastically increased with B-composition which included higher CO component. However, $NO_x$ was reduced as energy fraction($X_e$) rised except for the case of 100% $H_2$ addition at $\lambda=1.2$ and was, for A-composition, lowered to a factor of ten when compared with that of $H_2$ addition. HC emissions were largely influenced by $COV_{imep}$ due to misfire and partial burns.